
მიკრო და ნანო
სტრუქტურები

ივანე ჯავახიშვილის სახელობის თბილისის სახელმწიფო უნივერსიტეტი

ზუსტ და საბუნების,ეტყველო მეცნიერებათა ფაკულტეტი

მიკრო და ნანო
სტრუქტურები

შესავალი

მიკრო და ნანო
სტრუქტურები

ივანე ჯავახიშვილის სახელობის თბილისის სახელმწიფო უნივერსიტეტი

ზუსტ და საბუნების,ეტყველო მეცნიერებათა ფაკულტეტი

მიკრო და ნანო
სტრუქტურები

შესავალი



გეგმა

 რა არის მიკრო და ნანოსტრუქტურები
 რატომ არის საინტერესო
 რატომ დავაწყვილეთ

 რა არის მიკრო და ნანოსტრუქტურები
 რატომ არის საინტერესო
 რატომ დავაწყვილეთ

 რა არის მიკრო და ნანოსტრუქტურები
 რატომ არის საინტერესო
 რატომ დავაწყვილეთ

 რა არის მიკრო და ნანოსტრუქტურები
 რატომ არის საინტერესო
 რატომ დავაწყვილეთ



MICRO NANO
10-6მ 10-9მ

Au
ლითონები

Si
ნახევარგამტარები

ყოველთვის ატარებს დენს
ყოველთვის არის თავისუფალი
ელექტრონების დიდი რაოდენობა დენს ატარებენ მხოლოდ გარკვეულ პირობებში

MICRO NANO
10-6მ 10-9მ

Si
ნახევარგამტარები

ალმასი
იზოლატორები

დენს ატარებენ მხოლოდ გარკვეულ პირობებში



ნახევარგამტარები

მუხტის თავისუფალი მატარებლები
ჩნდებიან აღზნებისას (გათბობა, სინათლის
დასხივება, დეფორმაცია)

ფიზიკური თვისებები ძალიან
მგრძნობიარეა ქიმიური შემადგენლობის
მიმართ

მუხტის თავისუფალი მატარებლები
ჩნდებიან აღზნებისას (გათბობა, სინათლის
დასხივება, დეფორმაცია)

ფიზიკური თვისებები ძალიან
მგრძნობიარეა ქიმიური შემადგენლობის
მიმართ

მუხტის თავისუფალი მატარებლები
ჩნდებიან აღზნებისას (გათბობა, სინათლის
დასხივება, დეფორმაცია)

ფიზიკური თვისებები ძალიან
მგრძნობიარეა ქიმიური შემადგენლობის
მიმართ

მუხტის თავისუფალი მატარებლები
ჩნდებიან აღზნებისას (გათბობა, სინათლის
დასხივება, დეფორმაცია)

ფიზიკური თვისებები ძალიან
მგრძნობიარეა ქიმიური შემადგენლობის
მიმართ



სტრუქტურების ზრდა



MICRO NANO
10-6მ 10-9მ

მიკრო ან ნანო მეტრში იგულისხმება აქტიურის არის ზომა, ანუ იმ არის ზომა სადაც მიმდინარეობს
• დენის გატარება,
• ოპტიკური მოვლებები (შთანთქმა, გამოსხივება...)
• მაგნიტური მოვლენები (მაგნიტური მომენტების მოწესრიგება)

MICRO NANO
10-6მ 10-9მ

მიკრო ან ნანო მეტრში იგულისხმება აქტიურის არის ზომა, ანუ იმ არის ზომა სადაც მიმდინარეობს
• დენის გატარება,
• ოპტიკური მოვლებები (შთანთქმა, გამოსხივება...)
• მაგნიტური მოვლენები (მაგნიტური მომენტების მოწესრიგება)



ნანოსტრუქტურები



ატომებიდან კრისტალებამდე

1. ატომი - კვანტური ობიექტი
2. მოლეკულა - ქიმიური ბმა
3. კრისტალი - სტრუქტურა სიმეტრია

1. ატომი - კვანტური ობიექტი
2. მოლეკულა - ქიმიური ბმა
3. კრისტალი - სტრუქტურა სიმეტრია

ატომებიდან კრისტალებამდე

1. ატომი - კვანტური ობიექტი
2. მოლეკულა - ქიმიური ბმა
3. კრისტალი - სტრუქტურა სიმეტრია

1. ატომი - კვანტური ობიექტი
2. მოლეკულა - ქიმიური ბმა
3. კრისტალი - სტრუქტურა სიმეტრია



ატომიატომი



ქიმიური ბმა



კრისტალური სტრუქტურაკრისტალური სტრუქტურა



მყარი სხეულების ენერგეტიკული
სტრუქტურა(ენერგეტიკული სპექტრი)

კრისტალების თვისებები განისაზღვერაბა ენერგეტიკული
სტრუქტურით

ენერგეტიკული სტრუქტურა არის იმ
ენერგიების ერთობლიობა, რომელიც
შესაძლებელია მიიღოს ელექტრონმა

ენერგეტიკული სტრუქტურა არის იმ
ენერგიების ერთობლიობა, რომელიც
შესაძლებელია მიიღოს ელექტრონმა

მყარი სხეულების ენერგეტიკული
სტრუქტურა(ენერგეტიკული სპექტრი)

კრისტალების თვისებები განისაზღვერაბა ენერგეტიკული
სტრუქტურით

ენერგეტიკული სტრუქტურა არის იმ
ენერგიების ერთობლიობა, რომელიც
შესაძლებელია მიიღოს ელექტრონმა

ენერგეტიკული სტრუქტურა არის იმ
ენერგიების ერთობლიობა, რომელიც
შესაძლებელია მიიღოს ელექტრონმა



ელექტრონები კრისტალში

თავისუფალი ელექტრონების მოდელი
თითქმის თავისუფალი ელექტრონების

მოდელი
ძლიერი ბმის მოდელი

თავისუფალი ელექტრონების მოდელი
თითქმის თავისუფალი ელექტრონების

მოდელი
ძლიერი ბმის მოდელი

ელექტრონები კრისტალში

თავისუფალი ელექტრონების მოდელი
თითქმის თავისუფალი ელექტრონების

მოდელი
ძლიერი ბმის მოდელი

თავისუფალი ელექტრონების მოდელი
თითქმის თავისუფალი ელექტრონების

მოდელი
ძლიერი ბმის მოდელი



ელექტრონები კრისტალშიელექტრონები კრისტალში



ატომების ენერგეტიკული
სტრუქტურა წარმოადგენს
დისკრეტულ (წყვეტილ)
დონეებს

მყარ სხეულებში თითოეული ატომური
დონე გარდაიქმნება ზონად. ზონები
შეიცავენ ~1022 დონეს, რომლებიც
იმდენად ახლოს არიან ერთმანეთთან,
რომ შეიძლება უწყვეტად ჩაითვალოს.

მყარ სხეულებში თითოეული ატომური
დონე გარდაიქმნება ზონად. ზონები
შეიცავენ ~1022 დონეს, რომლებიც
იმდენად ახლოს არიან ერთმანეთთან,
რომ შეიძლება უწყვეტად ჩაითვალოს.

მყარ სხეულებში თითოეული ატომური
დონე გარდაიქმნება ზონად. ზონები
შეიცავენ ~1022 დონეს, რომლებიც
იმდენად ახლოს არიან ერთმანეთთან,
რომ შეიძლება უწყვეტად ჩაითვალოს.

მყარ სხეულებში თითოეული ატომური
დონე გარდაიქმნება ზონად. ზონები
შეიცავენ ~1022 დონეს, რომლებიც
იმდენად ახლოს არიან ერთმანეთთან,
რომ შეიძლება უწყვეტად ჩაითვალოს.

ენერგეტიკული ზონები
გამოყოფილია ე.წ.

ენერგეტიკული ღრეჩოებით.



The lower band is occupied by thr
ელექტრონები რომლებიც მონაწილეობენ
ქიმიურ ბმაში. დაბალ ტემპერატურებზე
თითქმის ყველა ელექტრონი იმყოფება ამ
ზონაში.

ამ ელექტრონებს არ შეუძლიათ დენია
გადატანაში მონაწილეობის მიღება,
იმიტომ რომ ისინი არ არიან
თავისუფლები.

ელექტრონები არიან თავისუფლები
და შეუძლიათ დენის გადატანაში
მონაწილეობის მიღება. ქვედა
ზონიდან გადასვლა ხდება
ტემპერატურის ან დასხივების (ან
სხვ.) საშალებით.

The lower band is occupied by thr
ელექტრონები რომლებიც მონაწილეობენ
ქიმიურ ბმაში. დაბალ ტემპერატურებზე
თითქმის ყველა ელექტრონი იმყოფება ამ
ზონაში.

ამ ელექტრონებს არ შეუძლიათ დენია
გადატანაში მონაწილეობის მიღება,
იმიტომ რომ ისინი არ არიან
თავისუფლები.

The lower band is occupied by thr
ელექტრონები რომლებიც მონაწილეობენ
ქიმიურ ბმაში. დაბალ ტემპერატურებზე
თითქმის ყველა ელექტრონი იმყოფება ამ
ზონაში.

ამ ელექტრონებს არ შეუძლიათ დენია
გადატანაში მონაწილეობის მიღება,
იმიტომ რომ ისინი არ არიან
თავისუფლები.

ელექტრონები არიან თავისუფლები
და შეუძლიათ დენის გადატანაში
მონაწილეობის მიღება. ქვედა
ზონიდან გადასვლა ხდება
ტემპერატურის ან დასხივების (ან
სხვ.) საშალებით.

The lower band is occupied by thr
ელექტრონები რომლებიც მონაწილეობენ
ქიმიურ ბმაში. დაბალ ტემპერატურებზე
თითქმის ყველა ელექტრონი იმყოფება ამ
ზონაში.

ამ ელექტრონებს არ შეუძლიათ დენია
გადატანაში მონაწილეობის მიღება,
იმიტომ რომ ისინი არ არიან
თავისუფლები.



კვანტური ნანოსტრუქტურები

ჩვენ შეგვიძლია შევაფასოთ რამდენად
ახლოს არიან ენერგეტიკული დონეები
ერთმანეთთან.

341.054 10 J s  

319.31 10m kg 
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კვანტური ნანოსტრუქტურები

ჩვენ შეგვიძლია შევაფასოთ რამდენად
ახლოს არიან ენერგეტიკული დონეები
ერთმანეთთან.

341.054 10 J s  

319.31 10m kg 

პლანკის მუდმივა
ელექტრონია მასა

L  კრისტალის ზომა



როცა კრისტალის ზომა შემცირებულია
ნანომეტრის რიგამდე ენერგეტიკული
სპექტრი ხდება დისკრეტული, ატომის
მაგვარი.
ნანოსტრუქტურებს ხშირად უწოდებენ
“ხელოვნურ ატომებს”.

6 6
2 1

9
2 1

10 10 , 10

10 10 , 1

L m m E E eV

L nm m E E eV

  



   

   

როცა კრისტალის ზომა შემცირებულია
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INTRODUCTION

Let’s begin our course with definition of nanoscience and nanotechnology that are main aspects of

nanomaterial science.

Nanoscience is the study of phenomena and manipulation of materials at atomic, molecular and

macromolecular scales, where properties differ significantly from those at a larger scale.

Bulk materials (object around us, crystals of micrometer size ) possess continuous physical properties.

But when particles assume nanoscale dimension, their quantities describing physical properties became

quantized. The same material (e.g., gold) at the nanoscale can have properties  (electrical, optical, etc.)

which are very different form (even opposite to) the properties the material has at the macro-scale (bulk).

Nanotechnologies are the design, characterization, production and application of structures, devices

and systems by controlling shape and size at nanometer scale.

In today’s scientific realm, the prefix “nano” describes physical lengths that are on the order of a billionth

of a meter (i.e. 10-9 m). The  size  range is set normally to be minimum 1nm to avoid single atoms or very

small groups of atoms being designated as nano object. The upper limit is normally 100 nm. A valid

question would be “why 100 nm, and not 150 nm?” The reason why the 1-100 nm range is approximate

is that the definition “nano” itself focuses on the effect that the dimension has on a certain material.

Nanoscience is not just the science of the small, but the science in which materials with small show new

physical phenomena, collectively called quantum effects, which are size-dependent and dramatically

differ from the properties of macro-scale materials. In other words in nanoscience considers the size

range where materials properties are sensitive to system size. This size range is different for different

materials. Bellow we will have more precise definition of lower and upper size limits of structures under

consideration.

Nanoscale materials lie in a physical size regime between bulk, macroscale, materials and molecules of

atoms. Nanoscale physics, chemistry, biology, and engineering ask basic, yet unanswered question such

as how the optical and electrical properties of materials evolve from those of individual atoms or

molecules. Other questions being asked include the following:

 How does one actually go about making a nanometer-sized objects and how does one make many

such identical objects?

 How do their optical and electrical properties change with “dimensionality”?

 How do charges move in such nanoscale systems?

 Do these materials possess new and previously undiscovered properties?

 Are they useful?
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In the presented course, basics physical concepts, which help us so answer these questions, are

considered.

Nanostructures are classified according the number of reduced to nanometer dimensions:

1. Quantum well – with only one dimension of nanometer size. This actually is a sheet with

nanometer  thickness (Figure 1. a)) – so called 2 dimensional structures.

2. Quantum wires – with two dimensions of nanometer size. (Figure 2. b))

3. Quantum dots – all three dimensions are of nanometer size. (Figure 2. c))

a) b)                                                     c)

Figure 1. a) quantum well – electrons are confined in Si layers; b) quantum wires;  c) quantum dots.

When we speak about nanometer size it is obvious that the whole samples cannot have such small sizes.

Nanometer size is an area where the electron (the main player in electronics) is confined. Bellow we will

see that when electron is confined in the area small area its energy levels become discrete (atomic like).

The distance between the levels depends on size of the area where electron is confined. Quantum

mechanical consideration (see below) tells us that the narrower localization area the higher is the kinetic

energy of electron. There exists the size for which electron has such high kinetic energy that it

cannot be localized. Actually this is a lower size limit. It varies from material to material. With

increasing the localization size the distance between the neighboring energy levels E . The upper limit

is usually defined from the condition BE k T  ,  i. e.  energy level separation is order of thermal

energy.

In the next chapter we will discuss energetic structure of bulk materials, in order to understand how

properties of materials change with size reduction, as well as to learn what the mechanism of electron

localization in quantum nanostructures.
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Chapter 1. Bulk Materials

The most of materials used in electronics are crystals. Therefore we will consider here properties

of crystalline materials. The main question to ask when studying crystals is: how do properties

of solid differ from those of its constituent atoms or molecules?   We will highlight here five

aspects that make the physics of the crystalline state interesting and different, namely

 Crystal symmetry

 Electronic bands

 Vibronic bands

 The density of states

 Delocalized states and collective excitations.

1.1 Crystal symmetry

Crystals have long range translational order, and short range order characterized by point groups.

The point group symmetry refers to the group of symmetry operators that leaves the crystal

invariant. Examples of this include rotations about particular axes, reflections about planes and

inversion about points in the unit cell.

Let’s consider crystal structure. We introduce the concept of crystal lattice. Crystal lattice is a

set of equivalent points to which atoms or group of atoms (basis) are bound. The equivalence of

crystal lattice points are conditioned by the identity of atoms or groups of atoms, and   their

symmetrical arrangement (Figure 1.1).

Figure 1.1 crystal structure = crustal structure + basis
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From any point of crystal lattice with position vector or


it is possible to transfer any other

lattice point by means of lattice or translation vector defined as

1 1 2 2 3 3n n a n a n a  
   

. (1.1)

In this expression 1 2 3, ,n n n are arbitrary integers, 1 2 3, ,a a a
  

are named as main translations.

Proceeding from the mentioned above, if or


is a lattice point, 0r r n 
  

corresponds to

lattice point too.

1 2 3, ,a a a
  

vectors define parallelogram, which we call unit cell. Proceeding from the

definition of 1 2 3, ,a a a
  

vectors, by the repetition of unit cell to fill all space is possible

(Figure.1.2).

Crystal point group symmetry is defined by relations between the length of 1 2 3, ,a a a
  

vectors

and angles between them. 1 2 3, ,a a a
  

vectors identify the symmetry operators – rotations

inversions reflections, which leave crystal invariant.  Consequently, these relations define

Figure 1.2  a) whole crystal;  b) unit cell
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the crystal systems, which differ from each other by set of symmetry operators. There are

seven crystal systems and  they are given in Figure 1.3.

The link between the measurable properties and the point group symmetry of a crystal can be

made through Neumann’s principle. This states that:

Any macroscopic physical property must have at least the symmetry of the crystal

structure.

For example, if a crystal has four-fold rotational symmetry about a particular axis ( 4 rotations

around of this axis leave crystal invariant), then we must get the same results in any experiment

we might perform in four equivalent orientations.

Figure 1.3 Seven crystal systems
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It is instructive to compare the properties of a crystal to those of the atoms from which it has

been formed. A gas of atoms has no translational order. Therefore in crystal we expect new

properties connected to translational symmetry. Besides, the point group symmetry of a crystal is

lower than that of the individual atoms, which have the highest possible symmetry due to their

spherical invariance. We therefore expect to find other effects in the solid state that relate to the

lowering of the symmetry on going from free atoms to the particular point group of the crystal

class. The lifting of degeneracies by reduction of the symmetry is a well-known effect in atomic

physics. Free atoms are spherically symmetric and have no preferred directions. The symmetry

can be broken by applying an external magnetic or electric field which creates a preferred axis

along the field direction. This can lead the lifting of certain level degeneracies that are present in

the free atoms. The Zeeman effect, for example, describes the spitting of degenerate magnetic

levels when a magnetic field is applied. If the same atom is introduced into a crystal, it will find

itself in an environment with point group symmetry. This symmetry is lower than that of the free

atom, and therefore some level degeneracies can be lifted. This point is illustrated in Fig 1.4. The

splitting is caused by the interaction of the orbitals of the atoms with the electric fields of the

crystalline environment. The character of splitting depends on the point group of a crystal. The

higher the symmetry of a point group the higher is the remaining degeneracy.

It should be mentioned that many important  materials do not posses long range translation

symmetry. Glass is an obvious example.  The energetic structure of these materials may be very

similar to those of their constituent atoms and molecules. Point group symmetry mainly defines

the peculiarities of electronic and vibronic  spectra in such type of materials.

Long range order, which is  characteristic for majority of solid materials, is  revealed in that

system is invariant with respect to r r n 
  

transformation. This means that two points into

crystal separated be lattice vector are equivalent. Obviously, because of  this new type of

symmetry new conserved measurable physical quantity   should appear. Energies and wave

functions of electrons become dependent on new additional quantum number. This new quantum

number is named as quasi momentum, by analogy to ordinary momentum, which is connected to

invariance with respect to r r dr 
  

infinitely small translation.
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1.2 Energetic bands

The atoms in a solids are packed very close to each other, with the interatomic separation

approximately equal to the size of atoms. Hence the outer orbitals of the atoms overlap and

interact strongly with each other. This broadens the discrete levels of the free atoms into bands,

as illustrated in Fig.1.5

Figure 1.4 Splitting of the magnetic levels of free atom by the crystal field effect and external
magnetic field.
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How does energy levels depend on quasi momentum (or wave vector)?

This can be estimated in different approximation.

1.3 Free electron model

Translational symmetry causes delocalization of electronic states, which is connected to the fact that due

to the equivalence of crystal points probability of finding of electron in different lattice point is the same.

However, in free elector model we did not account for microstructure of the crystal. Crystal can be treated

as potential well for electrons with infinitely high walls. In this case (bulk samples) allowed energy values

vary quasi-continuously, and are described by the formula:

 
2

2 2 2

2k x y zE k k k
m

  


(1.2)

Figure 1.5 Schematic diagram of the
formation of electronic bands in a solid from
the condensation of free atoms
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If we introduce wavefunctions that satisfy periodic boundary conditions that is if we require

wavefunctions to be periodic in x, y, z with period

       , , , , , , , ,x L y z x y L z x y z L x y z         (1.3)

We obtain

2 4
, , 0; ; .....x y zk k k

L L

 
   (1.4)

The corresponding wave functions are wave functions of free

  ik r
k r e 

 
. (1.5)

This is a traveling wave caring momentum p k
 
 .

1.4 Nearly free electron model

The band structure of a crystal can often be explained by the nearly free electron model for

which the band electrons are treated as perturbed only weakly by the periodic potential of the ion

cores.  Let’s see what introduction of periodic potential will give.

We consider the simplest case – one dimensional chain of atoms.  Interatomic separation in this

chain is a , i. e. we have one-dimensional crystal lattice with lattice constant a ( Fig.1.6 a).

Introducing periodic potential in the model changes the picture in the way that the wavefunctions

at k a  are not traveling waves  exp i x a or  exp i x a of free electrons. At these

special values of k the wavefunctions are made up of equal parts of waves traveling to the right

and left. The wave traveling to the one direction interferes with the wave reflected from the

neighboring crystal point.
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For this special value of wave vector constructive interference takes place, because the path

difference is an integral number of wavelengths. That is traveling waves form two standing

waves:

/ /

/ /

( ) 2cos

( ) 2 sin

i x a i x a

i x a i x a

x
e e

a
x

e e i
a

 

 











   

   
(1.6)

These two standing waves pile up electrons at different regions, and therefore they have different values

of the potential energy in the field of the ions of the lattice. This is the origin of the energy gap. The

probability density  of a particle is   2
x

. For a pure traveling wave probability density is equal to 1.

The charge density is not constant for linear combinations of plane waves. For which we have

Figure.1.6 a) Variation of potential energy of a electron in the field of the ion cores of a linear lattice;
b) Distribution of probability density in the lattice.



13

 

 

2 2

2 2

( ) ~ cos

( ) ~ sin

x

a
x

a


 


 

  

  
(1.7)

The first of these functions piles up electrons on the positive ions,  where the potential energy is lowest,

while the second one concentrates  electrons away from the potential energy minima. Because of

different localization of ( )  and ( )  states, corresponding energies are different. At k a 

energy gap usually denoted as gE occurs.

We see that using nearly free electron model instead of free electron models explains appearance   of

energy gap in dispersion relation. (Figure 1.7)

1.5 k∙P theory

Figure.1.7 a) Plot of energy versus wavevector for a free electron; b) Plot of energy versus
wavevector for a electron in a monoatomic chain.
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1.5 k∙P method

k∙P model  is one of the most popular in studying bulk and nano-structured semiconductor

materials and has been used widely during past decades. This method enables one to find wave

functions and energies for electron in periodic structure  for any value of wavevector using

known energies and wave function at particular point k0.

For the electron in a periodic potential

   V r V r n 
  

(1.8)

where n


is the lattice vector defined by (1.1), the electron wave function satisfies the

Schrödinger equation

2

( ) ( ) ( ) ( )
2

V r r E k r
m

 
      

 

   
(1.9)

The Hamiltonian is invariant under translation by the lattice vector r r n 
  

. If  r


describes an

electron moving in the crystal,  r n 
 

will also be a solution to (1.9). Thus  r n 
 

will differ

from  r


at most by a constant, which must have a unity magnitude; otherwise, the wave

function may grow to infinity if repeat the translation infinitely. The general solution of the

above equation is given by

( ) ( )ik r
nk nkr e u r 

  
(1.10)

Where

( ) ( )nk nku r u R n 
  

(1.11)
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is a periodic function. This result is the Bloch theorem. The energy is given by

 nE E k


(1.12)

Here n refers to the band and k


the wave vector of the electron.

The k∙P method is a useful technique for analyzing the band structure near a particular point 0k


,

especially when it is near an extremum of the band structure.  Here we consider that the

extremum occurs at the zone center where 0 0k 


.

Consider the general Schrödinger equation for an electron wave function in the n-th band

2

( ) ( ) ( ) ( )
2 nk n nkV r r E k r

m

 
      

 

    . (1.13)

If substitute (1.10) in this formula

2

( ) ( ) ( ) ( )
2

ik r ik r
nk n nkV r e u r E k e u r

m

 
    

 

       (1.14)

we obtain equation in terms of ( )nku r


  
2

2 2

( ) ( ) ( ) ( )
2 2nk n nk

p k
V r k p u r E k u r

m m m

   
      
    

      . (1.15)

The above equation can be expanded near a particular point 0k


of interest in the band

structure. When 0 0k 


the above equation is expanded near  0 ,nE
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  
2 2

0 ( ) ( ) ( )
2nk n nk

k
H k p u r E k u r

m m

         

    
(1.16)

Where





2

0 ( )
2

x y z

p
H V r

m

k p k i k i k i
x y z

  

                   




   (1.17)

Our goal is to find ( )nku r


functions and corresponding  energies, which enable one to find

dispersion relation for definite zone (for definite n ) For 0k 


(1.16) equation has the form


0 ( ) (0) ( )no n noH u r E u r
 

(1.18)

Let’s assume that we know  the solution of (1.18). If interaction between the zones is small

(distance between them is large) the solution of  (1.16) can be found in the frame of perturbation

theory. In this case perturbation is equal to

 
2 2

2

k
W k p

m m
 

 
(1.19)

Using standard procedure of perturbation theory, close to 0k 


, nkE and corresponding nku are

written as

2
2 2 2

0 '0

0 2
' '02

n n

nk n
n n no n

u k p uk
E E

m m E E

  



 
(1.20)

0 '0
0

' '0

n n
nk n

n n no n

u k p u
u u

m E E

 




(1.21)
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As 0 0n nu k p u


matrix elements are equal to 0. In the expression for energy there are no linear

terms of k.

Formula (1. 20) can be rewritten as

2 2

0 2 *nk n

k
E E

m
 


(1.22)

where

2

0 '0

2
' '0

1 1 2
1

*

n n

n n no n

u k p u

m m mk E E

     




(1.23)

This expression can be treated as so called inverse effective mass of electron in crystal. It indicates that in

crystal, electron effective mass is different from mass of free electron. The reason is mixing the states of

different because of mixing of states of different zones by means of k p


term. As can be seen the effect

depends on

 0 '0n nu k p u


matrix element

 '0no nE E differences. The mixing with the  zones energy of which is less than noE decrease

the effective mass, while mixing with the states with energy higher than noE increase the

effective mass, or may make it even negative.

Let’s consider conductive band. The conductive band states mainly interact with the valence band states.

From the symmetry considerations valence band states, which are usually p-type (generated from l=1

atomic states) and are denoted as ,X Y and Z . We denote the conductive band state as S (they

generate mainly from l =0 atomic orbitals).  From the symmetry considerations we can estimate matrix

elements. Only  those given bellow are not equal to zero.

x y zS p X S p Y S p Z iP   . (1.24)
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Using (1.24) from (1.23) we obtain

22
1

* g

m P

m mE
  . (4.14)

Here gE is so called band gap – the difference between the conductive and highest valence band at 0k 


we see that in this approximation effective mass does not depend on wave vector – we have

parabolic dispersion relation. Generally an effective mass is wave vector dependent and

dispersion relation is quite complicated. In Figure 1.8 the band structure of Si is given. Γ, Λ, Δ, Χ,

L denote the points of different symmetry in k space. We can see that close to Γ point ( 0k 


) dispersion

relation is parabolic indeed. However, away from this point, there is deviation from the parabolic shape.

Finally, it should be mentioned that the values of quasi wave vector equal to
a


 limit the area called the

first Brillouin zone. In this region all un-equivalent values of wave vector are places.

Figure 1.8 E=E(k) relations for Si.
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Chapter 2. Quantum Nano-structures, Their Growth and Structural

Characterization

In the late 1960s new electronic and optical phenomena was founded on a suggestion by Leo

Esaki and Raphiel Tsu, than working at the IBM Research Laboratories. They proposed that

structures composed of layered regions of semiconductors with different band gaps would have a

spatially varying potential energy surface that would confine carriers to the narrower band-gap

material. If there were few enough adjacent layers of this material, then the carriers could be

confined within regions comparable to their de Broglie wavelength – the natural length scale that

governs their quantum mechanical behavior. For this reason, these narrow regions are now called

“quantum wells”. Electrons and holes in quantum wells were predicted to exhibit remarkable

optical and transport properties that could be controlled by varying the width of the well and

their barriers. Figure 2.1 presents AlGaAs/GaAs quantum well and its energetic diagram.

Figure 2.1 AlGaAs/GaAs quantum well
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At the time that Esaki and Tsu made their proposal, the available technology could not produce

materials of sufficient quality to verify the predicted effects. Nowadays Epitaxial growth

techniques gives us the possibility to obtain layered structures, which have already gained

practical application. Advances in epitaxial growth techniques have played a pivotal role in the

realization of ever more ambitiously designed quantum heterostructures. In such structures the

confinement of electron motion in one, two or three dimensions occurs, and the effective

reduction of dimensionality takes place. In this chapter we present epitaxial growth techniques,

epitaxial growth modes, as well as experimental methodologies that have been developed to

achieve the required control over composition, doping, and interface characterization.

2.1 Molecilar Beam Epitaxy

Molecular beam epitaxy (MBE) is the simplest  and one of the widely used way of fabricating

semiconductor heterostructures. MBE is essentially two-step process carried out in an ultra-high

vacuum environment. In the first step, atoms or simple homoatomic molecules which are

constituent of the growing material (e.g. atomic Ga and either As2 for GaAs) are evaporated

from solid sources and directed toward a heated substrate, which is typically a few centimeter in

size (Figure 2.2). The particles within these beams neither react nor collide with one another, i.e.

the deposition onto the deposition onto the substrate is ballistic and the particles are said to

undergo molecular flow – hence the name molecular-beam epitaxy. The substrate is often rotated

for more uniform deposition rates across the substrate.

The second step of MBE is the migration of the deposited species on the surface prior to their

incorporation into the growing material.  This determines the profile, or morphology, of the film

and its effectiveness depends on a number of factors, including the deposition rates of the

constituent species, the surface temperature, the surface material, and its crystallographic

orientation. The dependence of the morphology on the deposition rate of new material means

that MBE (as well as other epitaxial growth techniques) are inherently nonequilibrium, or

driven, process. Growth near equilibrium is governed almost exclusively by thermodynamics.

For epitaxial growth, thermodynamics still provides the overall driving force for the
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morphological evolution of the surface, but the extent to which equilibrium is attained even

locally is mediated by kinetics, i. e. the rates of processes that determine how a system evolves.

A major strength of MBE is that the ultra-high vacuum environment enables the application of in

situ surface analytical techniques to characterize the evolution of the growing material at various

level of resolution – from microns to the arrangements of atoms. These techniques will be

discussed below.

Fig. 2.2 The arrangement of the substrate, the reflection high-energy electron diffraction
(see below) measurement apparatus, consisting of an electron gun and collector screen.
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2.2 Vapour-phase Epitaxy

An alternative to deposition by molecular beams is hydrodynamic transport of material to the

substrate from gas source. In the scenario, which is called vapour-phase epitaxy (VPE), the

constituent of the growing surface are delivered within heteroatomic molecules called

precursors. For group IV group materials, the precursors are hydrides, chlorides, or chloro-

hydrides. The growth of III-V materials uses precursors for the group species, which contain

carbon, and the V elements are supplied as hydrides.

The pressures inside a vapour-phase reactor can vary from 10-2 torr up to atmospheric, so the

flow of the gas is viscous and the chemicals reach the substrate by diffusion through a boundary

layer. Thus, the delivery of material to the growing film encompasses gas phase and surface

chemical reactions, as well as mass transport within fluid as it flows through the reactor, the

latter being highly dependent on the system pressure and reactor design.

The use of gas sources has several attractive features for the epitaxial growth of semiconductor

heterostructures. They can be used at room temperature, thus causing less contamination than

high-temperature sources, and with a very simple reactor design, can give a more uniform flux

than of a molecular beam, so that the surface does not need to be rotated. An operational

advantage over MBE is that, because there is no depletion, the growth chamber does not need to

be opened and exposed to air to replenish the source material. An important practical

disadvantage of vapour-phase is that the gas sources can be highly-toxic.

2.3 Epitaxial growth Modes

As mentioned for obtaining nanostructures two different materials with different band gap are

needed. Numerous experiments have revealed that, for small amounts of one material deposited

onto the surface of another material (similar or different), the epitaxial growth is one of the three

distinct types:
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 Frank-van Merve morphology, with flat single crystal films consisting of successive

complete layers;

 Volmer-Weber morphology, with three-dimensional (3D) islands that leave part of the

substrate exposed;

 Stranski-Krastanov morphology, with 3D islands atop athin flat “wetting” film that

completely covers the substrate. These morphologies are illustrated in Figure 2.3

For lattice-matched systems, the Frank-van der Merve and Volmer-Weber morphologies can be

understood from thermodynamic wetting arguments based on interfacial free energies. We

denote the free energy of the epilayer/vacuum interface by e , that of the epilayer/substrate

interface by i , and that of the substrate/vacuum interface by s , the Frank-van der Merve

growth mode is favored if

e i s    (2.1)

Figure 2.3 (a) - Frank-van der Merve, (b) - Volmer-Weber, (c) Stransky-Krastanov –
morphologies.
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In this case, as the epilayers are formed, the free energy decreases initially before attaining a

steady-state value for thicker films. Alternatively, if

e i s    (2.2)

then Volmer-Weber growth is favooured. Here, the free energy increases if epilayers are formd

on the substrate, rendering a uniform layer thermodynamically unstable against a break-up into

regions where substrate is covered and those it is uncovered.

The Stanski-Krastanov morphology is observed in systems where there is appreciable lattice

mismatch between the epilayer and the substrate. This growth mode is thought to be related to

the accommodation of the resulting misfit strain, which changes the balance between the

surface and interfacial free energies as the strain energy increases with the film thickness. Thus,

although the growth of “wetting” layers is favored initially, the build-up of strain energy

eventually makes subsequent layer growth unfavorable. Beyond this point, the deposition of

additional material leads to the appearance of 3D islands within which atrain is relaxed through

the formation of misfit dislocations. However, there is another scenario within the Stanski-

Krastanov morphology: the formation of islands without dislocations – called coherent islands

(Fig. 2.4) – atop one or more wetting layers. This phenomenon, which has been observed for a

number of systems, has many applications.

Figure 2.4 Coherently strained islands atop wetting layer.
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Figure 2.5 presents the schematic dependence of the film chemical potential on the film

thickness in number of minolayers for the three modes of growth: Volmer-Weber (VW),

Stransky-Krastanov (SK), and Frank-van der Merwe (FM).

2.4 Growth Kinetics

The fabrication of heterostructures requires growing crystalline materials on the surface of

different materials, a process which is known as heteroepitaxy. But a useful starting point for

understanding heteroepitaxial phenomena is homoepitaxy – the growth of a material on a

substrate of the same material. Many atomistic processes that occur during heteroepitaxy have

direct analogues in homoepitaxy. Many atomistic processes that occur during heteroepitaxy

have direct analogues in homoepitaxy.

Figure 2.5 dependence of the film chemical potential on the film thickness for the three
growth modes. The dashed line gives the chemical potential of the unstable wetting layer.
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We develop two most analytic descriptions of epitaxial kinetics: the Burton-Cabrera-Frank

(BCF) theory and homogeneous rate equations.

Burton-Cabrera-Frank theory

The BCF theory describes growth on a vicinal surface of a monoatomic crystal in terms of the

deposition and migration of single adatoms. The central quantity is, therefore, the adatom

concentration (x, t)c at position x and time t . The processes which causes this quantity to

change are t

Diffusion of adatoms, which have diffusion constant D , and flux J of adatoms onto the

surface. From the molecular beam. We will assume that the desorption of the atoms from the

surface can be neglected, but this can be readily included in the theory if required. In the

simplest form of the BCF theory, the equation determining (x, t)c on a terrace is a one-

dimensional diffusion equation with a source term:

2

2

C C
D J

t x

 
 

 
(2.3)

This equation is supplemented by boundary conditions at the step edges which bound the

terrace

(0, ) 0, ( , ) 0C t C L t  (2.4)

where L is the terrace length. These boundary conditions stipulates that adatoms are absorbed

at step and immediately incorporated into the growing crystal with no possibility of subsequent

detachment. We will focus on the steady-state solution of equation (2.3). With (2.4) boundary

condition (2.4), we obtain

( ) ( 2 ) ( )C x J D x L x  (2.5)
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which is a parabola with its maximum at the centre of the terrace and which vanishes at the

terrace edge, according to boundary condition. The scale of the adatom concentration is set by

the growth conditions (substrate temperature and flux) through the ratio J D . This quantity is a

measure of the competition between the deposition flux, which drives the surface away from

equilibrium and increases the adatom density, and the relaxation of the surface toward

equilibrium through adatom diffusion, which decreases the adatom density.  Since the theory

neglects interactions between adaatoms, the growth conditions must be chosen to ensure that the

adatom concentration is maintained low enough to render their interactions unimportant. Thus

th BCF theory is valid only for relatively small values of J D , i.e. high temperatures and/or

low fluxes, where growth is expected to occur by so called step flow.

Homogenous rate equations

With increasing temperature or decreasing deposition rate, growth by the nucleation,

aggregation and coalescence on the terraces of substrate becomes increasingly likely and the

BCF picture is no longer appropriate. One way of providing a theoretical description of this

regime within an analytical framework that complements the BCF  theory is with equations of

motion for the densities of adatoms and islands. These are called rate equations.

Here we consider the simplest rate equation of growth, where adatoms are only mobile surface

species and the nucleation and growth of islands proceeds by the irreversible attachments of

adatoms, i.e. once an adatom attaches to an island or another adatom, subsequent detachment of

that adatom cannot occur. We will signify the density of surface atons by  1n t and the density

of s-atom islands by  Sn t where 1s  . The rate equation for 1n is

21
1 1 1

2

2
x

s s
s

dn
J D n Dn n

dt
 



    (2.6)
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In common with most formulations of rate equations, the adatom and island densities are taken

to be spatially homogeneous. In particular, there is no diffusion term 2
1D n , despite the fact

that adatoms are mobile. This description is most suitable for singular surfaces, where there are

no pre-existing steps to break the translational symmetry of the system and induce a spatial

dependence in the adatom and island densities.

The first term on the right-hand side of equation (2.6) is the deposition of atoms onto thr

substrate, which increases the adatom density, and so has a positive sign. The next term

describes the nucleation of a two-atom island by the irreversible attachment of two migrating

adatoms. This term decreases the number of adatoms (by two) and thus has a negative sign.

The rate for this process is proportional to the square of the adatom density because two

adatoms are required to form a two-atom island, and D , the adatom diffusion constant, because

these adatoms are mobile. The third term accounts for the depletion rate of adatoms due to their

capture by islands. This term is proportional to the product of the adatom and total island

densities and must also have a negative sign. The quantities i , called capture cross section,

accounts for the diffusion flow of atoms into the islands.

The rate equation for the density of s-atom islands  Sn t is

1 1 1
s

s s s

dn
Dn Dn n

dt
   (2.7)

The first term on the right-hand side of this equation is the creation rate of s-atom islands due to

the capture of adatoms by (s-1)-atom islands. Similarly, the second term is the depletion rate of

s-atom islands caused by their capture of adatoms to become (s+1)-atom islands. There is an

equation of this form for every island comprised of two or more atoms, so we have an infinite

set of coupled ordinary differential equations. However, since the density of large islands

decreases with their size, in practice the hierarchy in (2.7) is truncated to obtain solution for 1n

and the remaining Sn to any required accuracy. Notice that in writing (2.7) we have omitted any

direct interactions between islands. This restricts us to a regime where there is no appreciable

coalescence of these islands.



29

To illustrate the calculus of rate equation, we consider a limiting case where all of the capture

numbers are set equal to unity. Then, by introducing the total island density,
1 SS

N n


  ,

using this definition in (2.6), and summing the equation in (2.7) over s, we obtain a closed set of

two equations for 1n and N :

21
1 1

2
1

1 2
dn

Rn Rn N
d
dN

Rn
d





  

 (2.8)

where /R D J and we have used the relation between the coverage and the flux in the absence

of desorption, Jt  , to replace the time by the coverage as the independent variable. This

replacement is made because the coverage is the more “natural” variable, since it can be

measured directly with greater accuracy that the deposition time and the flux.

Equations (2.8) are straightforward to integrate numerically and their silution are shown in Fig.

2.6. we will focus here on the initial and longtime behavior of the adatom and islands densities,

where analytical solutions are easily obtained.

Figure 2.6 The dimensionless adatom and island densities, denoted by n and N , as

a function of dimensionless time, t , obtained by integrating the rare equation (2.8)
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At short times ( 1  ),

3
1 ,n N R   (2.9)

The density of adatoms initially shows a linear increase with coverage (or time), which is due

entirely to the deposition flux. The islands are somewhat slower in their early development,

showing a cubic time–dependence, because the adatom density is too low for there to be

appreciable island nucleation. Equations (2.8) show that N continues to increase for all later

times, although 1n increases initially, it eventually begins to decrease (Fig. 2.6). This continues

until we reach a regime where 1n N and 1 0dn d  . In this regime, we obtain

1/3 2/3
1

1/3 1/3

n R

N R





 




(2.10)

Notice that, just as in equation (2.5), the ratio D J is the controlling parameter for

quantities which characterize the surface morphology. In particular, the equation for N

indicates that increasing the temperature (i.e. decreasing D ) and/or decreasing the flux J

causes the island density to decrease, resulting in fewer, but larger islands.

2.4 Mechanism   of Heteroepitaxial Growth

The morphology that results during the growth of a material on the substrate of a different

material is central to the fabrication of all quantum heterostructures. This morphology is

determined by the surface and interface energies of the materials, the manner in which strain is

accommodated if the materials have different lattice constants, and any effects of alloying and

segregation. Controlling the morphology during heteroepitaxy involves understanding the

atomistic mechanisms by which these factors assert themselves.
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GaAs, AlAs and their alloys are the simplest semiconductor heteroepiraxial systems because of

the very small lattice mismatch between AlAs and GaAs and similar values of thermal

expansion coefficients. But this situation is not typical. The fabrication of heterostructures from

other combination of materials with potentially attractive properties requires identifying (or

even utilizing) the morphological and electronic consequences of any lattice mismatch.

There are abundant data available for several heteroepitaxial systems, but there is no theoretical

approach which captures the essence of morphological evolution if there is lattice misfit. There

are two reasons for this. The kinetics of atomic processes on the surface of strained systems are

not determined simply by local environment of the atoms, as in the case of homoepitaxy, but

may incorporate non-local information, such as the height of a terrace above the initial substrate

or the size and shape of 2D and 3D islands. Then there is the issue of lattice relaxation and any

resulting defect formation. The theoretical description of such effects at heterogenous interfaces

has relied largely on the minimization of energy functional in order to determine equilibrium

atomic positions near the interface as a function of the lattice mismatch.

The Frenkel-Kontorova model has been used to address several general aspects of the

accommodation of misfit srtain and the formation of dislocations in heteroepitaxial system

within a simply analytic framework.

Frenkel-Kontorova model

In the Frenkel-Kontorova model, the equilibriumpositions of atoms within the growing layer

result form the competition between the preferred interatomic separation of these atoms, which

interact through harmonic springs, and the periodicity imposed by the rigid potential of the

substrate. This potential induces elastic strain in the epilayer and can result in the formation of

misfit dislocations.

Many of the characteristic features of strained islands can be captures by the simplest calculation

of a one-dimensional monolayer island consisting of N adjacent atoms. The harmonic springs

connecting these atoms have a natural length, b the lattice constant of the deposited material,

and  a force constant k . The interaction between the atoms within the island and the substrate is

described by a rigid sinusoidal potential which has periodicity a , the lattice constant of the

substrate:
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1
( ) [1 2cos(2 / )]

2
V x W x a  (2.11)

The ground state of this system is determined by calculation the energy as a function of the

atomic positions within the island and then minimizing this expression with respect to these

positions. We denote this distances from the origin to the nth and (n+1)th atoms by n nX na x 

and 1 1( 1)n nX n a x    , where nx and 1nx  are the displacements of the atoms from the

bottoms of their substrate potential troughs (Fig. 2.7).

The distance nX between the (n+1)th and nth atoms can be written as

1 1 1( 1)n n n n n n nX X X n a x na x x x a             (2.12)

The strain ( )n of the bond between these atoms is

Figure 2.7 Layout of atoms in epitaxial layer with respect of their equilibrium position. Curve shows
periodic potential.
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(2.13)

where f is the misfit between the epilayer and the substrate. The energy of the N-atom island is

now written as the sum of the potential energy (2.11) and the strain energy due to the changes in

the length of the springs in (2.13):

1
2 2

0 1
1 1

1
( ) [1 cos(2 )]

2

N N

n n n
n n

E
l f

W
  




 

      ,

1/22

0 2

ka
l

W

 
  

 
(2.14)

0l is the ratio of the interaction energy between the atoms in the epilayer to that between the

epilayer and the substrate.

The partial derivatives of E potential energy with respect to the variable n give the force acting

on the nth atom. In the equilibrium condition 0nE    . By minimizing (2.14) expression the

recurrent equations are obtained:
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(2.15)

These equations can be solved numerically, However it is possible to solve them analytically if

make definite assumptions. The obtained results gives us the possibility to calculate the energy

of epitaxial layer.
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Figure 2.8 shows the equilibrium configuration for islands of different size calculated with the

parameters 0.1f  and 0 10l  , i.e. for atoms in the epilayer that are much strongly bonded to

each other than th the substrate and which have a 10 % larger lattice constant than the substrate.

Several general issues can be discusses with reference to this figure

 Atoms near the centre of the island adopt positions close to the minimum of the nearest

potential energy trough. Atoms further from the centre of the island are correspondingly

further away from their nearest minima. Thus, strain relaxation occurs predominantly at the

edges of islands.

 As the number of atoms in an island increases, the strain energy within the island builds up

and the energy difference between a coherent island and an island with a single dislocation

diminishes until, at some critical size, a dislocation is formed.

 With the parameters we have chosen, an island with 12 or more atoms minimizes its energy

by forming a dislocation, which is located in the centre of the island. Since strain relaxation

is largest at island edges, we would expect the dislocation to form at the island edge and to

migrate toward the centre, with the interface between the epilayer and the substrate

providing the one-dimensional slip “plane”

Figure 2.8 Equilibrium position of atoms in a one-dimensional epilayer within the Frenkel-Kontorova
model. Islands are shown with (a) 4 atoms, (b) 8 atoms, (c) 12 atoms, and (d) 16 atoms. The islands in
(a), (b) and (c) are coherent, but the island in (d) has a dislocation located in its centre.
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Figure 2.9 demonstrate formation of dislocation in heterostructure. One can see that number of

atomic layers in epilayers is less than that in substrate by one.

2.5 Characterization Techniques

The advances in nanoscience and nanotechnology are uniquely connected to the development of

characterization techniques. The techniques we are discussing here are: reflection high-energy

electron diffraction (RHEED), transmission electron microscopy (TEM), scanning electron

microscopy (SEM), Scanning Tunneling Microscopy (STM), and atomic force microscopy

(AFM).

Reflection High-energy Electron Diffraction

Surface electron diffraction is a standard method for examining the structure of surface both in

equilibrium and in the presence of a deposition flux, and thus represents one of the techniques used

during epitaxial growth. RHEED measurement is carried out by directing a high-energy (10-

20keV) beam of electrons at a glancing angle (0.5-30) toward the surface (Fig.2.2). The  electrons

Figure 2.9 Formation of dislocation in heterostructure. Curve  shows the periodic
potential which minima coincides to the equilibrium position of atoms.
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penetrate a few layers into the surface and those which emerge are recorded on a phosphorescent

screen. RHEED has three main advantages: (i) it is a simple measurement to set up, requiring only

an electron gun and a recording screen, (ii) it is geometrically compatible with the molecular

beams (during MBE), and so does not interfere with the growth process, and thus, (iii) it can be

carried out in situ under normal growth conditions.

RHEED provides several type of information about a surface, including its crystallographic

symmetry (from the symmetry of the diffraction pattern), the extent of long-range order (from the

sharpness of the pattern), and whether growth is proceeding in a 2D or a 3D mode. One of the most

common applications of RHEED is based on measuring the intensity of the specular beam (equal

incident and reflected angles). A typical example, taken during the growth of GaAs, is shown in

Fig. 2.10. Most apparent in this trace are the oscillations and their decaying envelope. The

oscillations are due to the repeated formation of bi-atomic Ga-As layers and provided the first

direct evidence of layer-by-layer growth in this system. The decaying envelope results from the

fact that this layer-by-layer growth is imperfect, i. e. subsequent layers began to form before the

preceding layers are complete.

Figure 2.10 Specular RHEED intensity oscillations from a singular GaAs. The broken lines
indicate the points where the specular intensity is a local maximum; these correspond to the
deposition of additional Ga-As bilayers
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The period of the oscillations in Fig. 2.10 indicates that the time required to form a complete bi-

layer is of the order of seconds. Since the molecular beams can be turned on and off mechanically

with a shutter, the amount of material deposited can be controlled to within a fraction of a layer.

Thus, a prescribed number of layers of one material (e.g. GaAs) can be deposited onto a surface,

followed by a prescribed number of layers of a second material (e.g. AlAs). This process can be

repeated to obtain multi-layer structure. The electronic properties of such structures can be

engineered by varying the number of deposited layers of different materials.

Transmission Electron Microscopy

Transmission electron microscopy is analogous to conventional light microscopy in that one

obtains pictures or micrographs of a specimen of interest. However, instead of photons, electrons

are used to construct the images.

In the TEM experiment, a thin or diluted sample is bombarded under high vacuum with a focused

electron beam. Electromagnetic lenses steer the beam and focus it onto the specimen. Transmitted

electrons then form contrast patterns that created images of the sample. In this regard, thicker

regions of the specimen occlude more of the incident beam than thinner regions, causing intensity

variations that help define the image. It should be mentioned, that absorption is generally small in

these experiments, since samples are inherently thin. As a consequence, most micrographs are

actually constricted from scattered electrons that arise from interactions with the material. This

scattering can be either elastic or inelastic and, in many cases, it is elastically scattered electrons

that are used to construct the micrographs. The transmitted electron beam image is then magnified

onto a detector or phosphorescent screen to yield a picture of the specimen. Fig.2.11 shows TEM

image of silver nanoparticles.

A key feature of the TEM is its inherently high degree of spatial resolution. Specifically, the

classical diffraction limit of electromagnetic waves is roughly half their wavelength. As a

consequence, a beam of electrons resolves much finer things than photons.

To illustrate, assume that the TEM has an accelerating voltage V .
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Electrons extracted from the filament or other sources then acquire a kinetic energy E eV .

Therefore for momentum and de Broglie wavelength we obtain:

0

0

2 ,
2

h
p m eV

m eV
  (2.16)

where 0m is electron mass, e - its charge, h - Planck constant.  The expression for the de

Broglie wavelength can be written a more convenient way substituting the values of constants:

1.225(nm)
(nm)

(volt)V
  (2.17)

Next, the diffraction limit is defined as

0.612
l

NA


 (2.18)

Figure 2.11 TEM image of silver nanoparticles randomly assembled on a grid.
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which is the length below which we cannot distinguish two objects next to each other. The

relation is called Abbé equation. In it, sinmNA n  is the numerical aperture of the imaging

lens, mn is the refractive index of the medium, and  is the half-angle of the impinging rays

from the normal incidence. Substituting (2.17) in (2.18) we obtain

0.612(1.225nm)
(nm)

(volt) sinm

l
V n 

 . (2.19)

Since TEM experiments are conducted in vacuum, 1mn  ;  is generally small, therefore

sin  . A critical length scale is therefore

0.750
(nm)l

V
 .                                                  (2.20)

For a 100 keV system, the theoretical diffraction limited resolution is 0.237 ,l nm assuming

0.01rad  . This value is comparable to the interatomic spacing.

Scanning Tunneling Microscopy

The scanning tunneling microscope, invented in 1982 by Gerd Binning and Heinrich Rohrer,

uses an atomically sharp tip placed sufficiently close (a few angstroms) to a surface to produce

an electron tunneling current between the tip and the surface. By measuring this current as the

tip scans the surface, images of the surface are obtained which, under favorable circumstances,

have a lateral resolution of 1 A


 and vertical resolution of 0.1 A


 .

The basic principle of the STM can be understood with a model introduced by Tersoff  and

Hamann in 1983. The tip is represented by a spherical potential well within which the

Schrödinger equation is solved. By retaining only the spherical symmetric solutions, a simple

expression is obtained for the tunneling current I at low bias voltage of V :  , FI eV r E


 ,
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where  , Fr E


is the local density of states at the Fermi energy, FE , of the surface at the

position r


of the tip. Thus, scans taken at constant current measure contours of constant Fermi-

level charge density at the surface.  It should be mentioned that STM is sensitive to charge

density, rather than simply atomic positions.

STM is very important technique, and its impact on the development of epitaxial growth and

investigation of its fundamentals is huge. However, utilization of this technique during the

growth processes faces some technical problems. If an STM is placed in a conventional growth

chamber, the tip shadows the incoming molecular beam. Thus, the imaging of growing surfaces

has had to rely on one of two indirect strategies. The most common is to image a surface that

has been quenched after a prescribed period of growth, thereby providing a “snapshot” of the

surface.  It has  become  possible also  to  arrange  scan  and growth rates within specially

designed growth chambers to image the same region of a surface during growth  Though

technically more demanding,  this approach is the more desirable in principle because

particular kinetic  processes  can  be tracked  and  no  quenching  is required, thus providing  a

more faithful record of surface evolution.  But, because of the  very slow growth  rates  used in

current  implementations of this  “in vivo” method, the growing surface is closer to equilibrium

than for more typical growth rates and, moreover, is exposed for relatively long times to the

ambient impurities which are  always present  in any  growth  chamber.  These factors can

affect the growth in several ways, so care must be taken when interpreting such images to

ensure that they reflect the intrinsic growth characteristics of the material.

STM images of the surfaces of Si and GaAs are shown in Fig. 2.12. These images reveal an

important feature that is typical of semiconductor surfaces (and surfaces of many other

materials).  The creation  of a surface produces  broken,  or dangling,  bonds  which  leave the

surface  in an  unstable  high-energy  state.  The formation of new bonds to lower the surface

free energy results in displacements of surface atoms from their bulk-terminated positions.
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Atomic Force Microscopy

When the tip of an STM is brought  close to a surface, the atoms near the apex of the tip exert a

force on that surface which is of the same order of magnitude  as the interatomic  forces within

the surface. This effect is the principle behind the atomic force microscope. An STM tip,

mounted on a flexible beam, is brought just above a surface. The force between the surface and

the tip causes a small deflection of the beam. The surface is then scanned while a constant force

is maintained between the tip and the surface with a feedback  loop similar to that used in the

operation of an STM.

The AFM complements  the STM in several ways. Because the STM relies on a tunneling

current  for its operation, it is sensitive mainly to the density of electronic states near the Fermi

level of the sample. Thus, this density of states must be non-zero,   i.e.  the sample  must  be

conducting.  However,  since  the  AFM   tip responds  to interatomic  forces, which is a

cumulative  effect of all electrons,  the sample  need  not  be  a  conductor.  Additionally, since

the tunneling   current decreases exponentially with the tip-sample distance, an STM tip must be

placed within a few angstroms of the surface to maximize the resolution of the image.

Figure 2.12 a)  STM images of  Si; b)  STM images of  GaAs
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The AFM  most commonly operates in this mode (the “contact” mode) as well, but it  can  also

operate  at  much  larger  distances  from  the  surface  (50—150  A)  for samples  susceptible

to  damage  or  alteration by being in close proximity  to  the tip  (the  “non-contact”  mode).

But,  even in the  contact  mode,  attaining  atomic resolution   is  much  more  demanding

technically  than   with  the  STM.   Thus, many applications of the AFM involve scanning large

areas (up to microns) to image the gross morphology of the sample. This has the advantage of

not requiring a UHV environment and AFMs often operate in ambient atmosphere or in a

liquid.
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Chapter 3 Electrons in low Dimensional Structures

Quantum effects arise in systems which confine electrons to regions comparable to their de

Broglie  wavelength.  When  such  confinement  occurs  in one  dimension only (say, by a

restriction  on the motion  of the electron  in the z-direction),  with free motion  in the x- and y-

directions,  a “two-dimensional  electron  gas” (2DEG) is created.  Confinement  in  two

directions  (y and  z, say),  with  free  motion  in the x-direction,  gives a “one-dimensional

electron  gas” (1DEG)  and confinement of  its  x-,  y-,  and  z-motions   at  once  gives  a  “zero-

dimensional   electron  gas” (ODEG).  In  this  section,  we consider  the  description  of ideal

electron  gases in these cases, i.e. electron gases in which there is no motion  in the confining

direction  and  where we neglect interactions between the electrons.  We will then use these

results in the following section to characterize the density of states in real low-dimensional

structures, in which there is some degree of lateral mobility.

3.1 Free Electrons in Three Dimensions

An unconfined  electron in free space is described by the Schrodinger  equation

2 2 2 2

2 2 22
E

m x y z
 

   
       


(3.1)

where m is the free-electron  mass. The solutions  of this equation,

3

1
( )

(2 )
ik r

k r e



 

(3.2)

are plane waves labeled by the wave vector
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 , ,x y zk k k k


and correspond to the energy

2 2 2 22 2 ( )

2 2
x y zk k kk

E
m m

 
 


(3.3)

The vector components  of k


are the quantum numbers  for the free motion  of the electron,  one

for each of the classical degrees of freedom.

The number of states in a volume x y zd k dk dk dk


of k


-space is

3

2
( )

(2 )
g k dk dk




  
(3.4)

with  the  factor  of  2 accounting   for  the  spin-degeneracy  of  the  electrons.  To express this

density  of states  in terms  of energy states,  we use the fact that  the energy  dispersion  (3.3)

depends  only  on  the  magnitude  of k


.  Thus, by using spherical polar coordinates in k


-space,

2 dk sindk k d d  


and,  integrating   over  the  polar  and  azimuthal angles,  we are  left

with an expression that  depends  only on the magnitude k :

2
2

1
(k) dkg k dk


 (3.5)

By invoking (3.3), we can perform a change of variables to cast the right-hand side of this

equation  into a form involving the differential of the energy:

3 2
2

2 2 2 2 2

1 1 2 1 2

2

mE dk m
k dk dE EdE

dE  
       
    

(3.6)
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From this equation, we deduce the well-known density of states  g E of a free- electron gas in

three dimensions:

3 2

2 2

1 2
(E)

2

m
g E


   
 

(3.7)

Notice the characteristic square-root dependence on the energy.

3.2 Ideal Two-dimensional Electron Gas

An ideal 2DEG differs from free electrons in three dimensions in that the electrons have

unrestricted   movement  in only  two  dimensions  (x  and  y) with  complete confinement  in the

z-direction,  i.e. there  is no  freedom  of movement at  all in this direction.  The energy of an

electron in a 2DEG  is therefore

2 2 22 2 ( )

2 2
x yk kk

E
m m


 


(3.8)

The number of states within an area in k -space box of x ydk dk dk


is

2

2
( )

(2 )
g k dk dk




  
(3.9)

with the factor of 2 again inserted to account for the spin degeneracy of the electrons. We

proceed as above, but now use circular polar coordinates to obtain

1
(k) dkg kdk


 (3.10)
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where 2 2
x yk k k  . We again use the relationship between energy and wave vector (3.8) to

express the density of states in terms of the energy:

1 2

2 2 2

1 1 2mE dk m
kdk dE dE

dE  
   
  

(3.11)

The density of states  g E of a 2DEG is therefore given by

2
(E)

m
g





(3.12)

Thus, for a 2DEG the density of states is a constant, i.e. independent of the energy. This is one of

the fundamental features of electrons in planar hetero- structures which make such structures

useful for applications.

3.3 Ideal Zero- and One-dimensional Electron Gases

When an electron is allowed only one-dimensional motion (along,  say,  the x-direction),  the

energy is given by

2 22 2

2 2
xkk

E
m m

 


(3.13)

A procedure analogous to that used in the preceding two sections then yields for the density of

states the expression

1 2

2

1 2 1
(E)

m
g

E
   
 

(3.14)
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This shows that  the density of states of a one-dimensional electron  gas (1DEG) has a square-

root singularity at the origin.

An ideal zero-dimensional electron is one that exists in a single state of fixed energy 0E . The

density of states is then given by

 0(E)g E E  (3.15)

Figure 3.1 shows energy dependence of density of states in 1, 2 and 3 dimensional cases.

Figure3.1. Density of states for an ideal electron gas in 1, 2 and 3 dimensions.
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In real low dimensional crystals i) electrons interact with ions in lattice sites. This is accounted in

the frame of effective mass approximation described in Chapter 1; ii) the dimension in which the

motion is restricted in reality is finite. This point is discussed in next sections.

3.4  Real Electron Gases: Single Particle  Models

By a  quantum well we mean  any  structure   in  which  an  electron  (or  hole)  is strongly

confined in one dimension.  A practical example of great importance  is obtained  when a plane

layer of GaAs  lies within a sample of bulk AlxGal-x As. These materials may be grown, e.g. by

molecular-beam epitaxy (MBE) in a layer- by-layer fashion to form such a structure. The

materials are lattice-matched  (the same lattice structure  and  very similar lattice  spacing).

Moreover, their band structures  are qualitatively  similar if the aluminum  proportion x is less

than approximately 0.4. However, the band gap of AlxGal-x increases linearly with increasing x.

What results (when 0x  ) is a discontinuity in the conduction and valence band edges, cE and

vE , as shown in Fig. 3.2. The precise proportion of  the  discontinuity   taken  up  by  the

conduction band  alone  must  be  known beforehand, from  experiment,  or  else  from  theory.

Quantum confinement of an electron within the thin layer of GaAs will happen if its energy is

below that of the conduction-band edge in the AlGaAs.  This is an example of a compositional

quantum well.

Figure 3.2.    Band-edge diagram for a typical AlGaAs/GaAs quantum well. The fraction x, of
Al is less than 0.35.
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The  envelope function  obeys  a  Schrodinger-like   equation   which,  in  the  simplest

materials, such as GaAs,  and near k = 0, takes the form

     
2

2

2 *
V r r E r

m
 

 
    
 

  
(3.16)

where E is measured  from the conduction-band edge and V does not include the crystal

potential.  The entire effect of the crystal potential is to change the electron mass from m to *m ,

the effective mass. (In GaAs, for instance, *m = 0.067 m.) The potential V in equation  (3.16)

contains the effect of all external potentials,  and in particular, that  due to changes in the

conduction band  edge.

Ideal Square Well

Most simply, the square-well potential  produced  in a compositional quantum well can  be

approximated by that  of an  infinite  square  well, i.e. that  in which  the potential  is constant

within the well and infinite outside the well (Figure 3.3 a))

 
0 0for z d

V z
otherwize

 
 

(3.17)

Since motion  is unrestricted  in the  y- and  z-directions,  the Schrodinger  equation  (3.16) is

separable  in rectangular coordinates, so the coordinate dependence  of the wave function  in the

(x, y) plane can be separated  from that  in the z-direction.  This results in plane-wave solutions

for the motion of the electron  in the x- and y-directions,

(x, y, z) e e (z)yx
ik yik x   (3.18)
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where (z) obeys the one-dimensional Schrodinger  equation  for a particle  in an infinite square

well

     
2 2

22 *

d
V z z E z

m dx
 

 
   
 


(3.19)

where  V z is given by (3.17).

As is well known, the general solution of (3.19) must be a linear combination of sines and

cosines chosen to satisfy the boundary conditions imposed by the well (Fig. 3.3 b)). Since  z

must vanish at 0z  , the solutions  must be of the form  sin kz and, since it must also vanish at

z d , we must choose / , 1, 2,3....k n d n  . This restriction results in the quantization of the

energy. The allowed energies associated with the motion of the electron along the z-direction are

2 2 2

22 *n

n
E

m d





(3.20)

The total energy of the electron is the sum of this quantized energy and the kinetic energy due to

its (x, y)-motion:

2 2 2 2 2 2

2

( )

2 * 2 *
x yk k n

E
m m d


 
 

(3.21)



51

Already, differences from the ideal 2DEG case are evident: (i) there can be several different

quantized energies nE , i.e. several possible states of z-motion, and (ii) the electron wavefunctions

have a finite spread  in the z-direction.

The E k


dispersion relation for an infinite quantum well is thus a generalization of simple

parabolic form shown in Fig.  3.4 and corresponding to ideal 2D electron systems.

One obtains  instead  the situation  shown  in Fig.  3.5 , where from equation  (3.20) for

2 2

0 2
1

2 *
n E

m d


 



For   energies 0E E (A  in  Fig.   3.5),  there   are   no  states;   for   energies  B ( 0 04E E E  )

the  density  of  states  (per  unit  area)  is just  that  for  a  perfect two-dimensional electron gas,

namely 2
0 (E) m*/g   . For energies C the density of states (DOS) is 02g ; energies D -

0 09 16E E E  have 03g for the DOS, and so forth.

Figure 3.3. a) Infinite square-well potential; b) Energies and wave functions  for the first two
quantized  states in a square-well potential.
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To convert this (E)g , which is the density of states per unit area of real space, to a density of

states per unit volume, one must divide by an appropriate length in the z-direction,  in this case

by the well width d . This three-dimensional DOS then rises in steps of 22 m* /  , as shown in

Fig. 3.6, where it is also compared  with the ordinary  bulk DOS. If states in the well are filled up

to some Fermi  energy FE , then states at the Fermi  level (the ones of most  interest  for

transport) will have different kinetic energies of motion in the x-y plane, and therefore different

Figure 3.4. Parabolic E k


relation for ideal 2D system

Figure 3.5.   Energy versus wave number  k for an infinite quantum well
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Fermi velocities, depending  upon  their quantum state in the well. Thus, for instance, if FE lies

above some level nE , then the Fermi  wavenumber  for states  in level n is given by

2 2

2 *
F

F n

k
E E

m
 


(3.22)

with the corresponding Fermi  velocity

*
F

F

k
v

m

 (3.23)

related  to Fk in the usual way.

The density of states can be written as

  2
(E E ),

1,
(E E )

0,

n
n

n
n

n

m
g E

E E

E E






 


   


(3.24)

Figure 3.6. Density of states  for an  infinite square  well. The  corresponding density  of states

for  an  unconfined  3D  system  is also  shown  for  comparison  (broken  line).
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Figure 3.7 also shows dispersion relation in quantum well.

Holes in Quantum  Wells

Holes as well as electrons can be confined strongly in one or more dimensions. In a GaAs

quantum well in the GaAs/AlGaAs system (Fig. 3.2), there is a quantum well for holes wherever

there is a well for electrons. In other systems, there may be a well just for electrons. In the first

case we have type-I quantum structure, in the second one - type-II quantum structures (Figure

3.8)

There is a three-fold  degeneracy in the hole bands  at the Γ-point ( 0k  ), which is the highest

point in the valence bands. In the bulk one deals with three sorts of holes. Spin-orbit splitting

depresses one of these bands to create the spin-split-off band, which is then often ignored.  The

other two bands  correspond to heavy and light holes (so called because of their greater or

Figure 3.7 E k


relation in quantum

well
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smaller effective mass); these states are degenerate  in energy at the Γ-point. In the bulk one can

treat the two (or three) sorts of holes separately (Figure 3.9).

In quantum wells and other strongly confined systems, however, the confinement breaks the

symmetry which caused the degeneracy in the first place. The hole states then mix and, in

general, they will mix differently in different directions.

Figure 3.8 type-I and type-II quantum structures

Figure 3.9 Dispersion relation for bulk crystal near 0k  point
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Non-parabolicity

For  electrons  with  energies near  the  bottom  of the  conduction band,  the  E k band

structure  is parabolic: 2 2 / 2 m*E k  . For somewhat higher energies, this relation  is no longer

true (the importance  of non-parabolicity, at a given energy, will depend on the material  in

question).  However, one can still define an energy-dependent effective mass  m E by

2 2

( )
2m*(E)

k
E k 

 (3.25)

We can  suppose  that  m E is known  in the  bulk.  Then, in an infinite square well, the

quantized energies nE will be given by

2 21
m( ) ,

2n n

n
E E k k

d


  (3.26)

Again the full energy E E for an electron  in state n is given by

2 2

2 (E) n

k
E E

m
  (3.27)

The situation  is illustrated  schematically  in Fig. 3.10.

Non-parabolicity will modify  the  quantized   energies 'nE from  their  original value,  though

only  negligibly for  low energies  near  the  conduction-band  edge (i.e.,  for  low n ).

Moreover,   for  each  level the E k relation  will be  parabolic near 0k  , but the curvature  of

the parabolas will become broader  as n becomes higher  (non-parabolicity is known  to increase

 m E as E becomes higher).  And finally,  the E k relation  for  each  level will itself  become

non-parabolic as k becomes large (Figure 3.11).
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Figure 3.10 Parabolic  and  non-parabolic E k relations  for an ideal square  well

Figure 3.11 E k relations at whole range of wave vector
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3.5  Finite Quantum Wells and  Real Systems

One  of  the  most  crucial  differences between this case and that of an infinite square well is that

the electron wavefunction need not be zero in the barrier  region (Figure 3.12). This fact that

electrons can penetrate into the barrier region will be particularly important when it comes to a

discussion of the physics of superlattices (see below)

An electron  in a finite square  well is confined by two potential  steps. These could be the finite

conduction-band discontinuities, for instance, in Fig. 3.2. Usually one solves for the

wavefunction  at a potential step using the following assumptions:  (i)  must behave

suitably at infinity (usually, decaying to zero), (ii)  must be continuous at the interface (say, at

the potential  step), (iii) the first derivative of  must also be continuous at the interface

(Fig.3.13).  These conditions  can be stated  as

    1 2
1 2

0 0

0 0 ,
z z

d d

dz dz

 
 

 

  (3.28)

Figure 3.12 Schematic  illustration of (a) wave functions,  (b) energies and  (c) density of states
for a particle confined to a finite square well.
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A semiconductor interface,  however, is more subtle than  an ideal potential  step for various

reasons.  In spite of this fact, the first assumption one might make is that  the  envelope  function

 for  the  electron  responds  to  a  conduction band offset in much the same way as the

complete wavefunction  to an ideal potential step. This begs a number of questions, some of

which  we shall  mention  here.  What  one  really  wants  to  know  is the correct  matching

conditions   for  the  envelope  function  at a  material  interface (Fig. 3.14). Although there are

many such questions still to be answered,  it is the case that  a simple effective-mass approach is

surprisingly good.)

Various  prescriptions have  been  proposed  for  the  matching  conditions  of a wavefunction at

a semiconductor interface.  Which is correct is still a matter of debate, and it may be the case that

there is not a unique answer. We present here the matching conditions in common use, which are

known as the Bastard conditions.

Figure 3.13 The wavefunction      at an ordinary  potential  step.

Figure 3.14.    Boundary  conditions  near a material  interface.  Electrons  in the material  on
the left (right)-hand side have effective mass 1m ( 2m ).
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At an interface, the effective mass and the conduction band edge potential  are effectively

discontinuous. Using the notation of Fig. 3.14, we have approximately that

     

   

 

1 2 1

0

*

0, 0

1, 0

m m z m m m z

V V z V z

z
z

z

    

  


   

(3.29)

The usual effective-mass Hamiltonian

2
2

*2
H V

m
   
 (3.30)

is not Hermitian for such a z-dependent  effective mass, but must be made so for quantum-

mechanical   consistency.   This   can   be   done by   using   instead   the Hamiltonian

 
2 1

2
H V

m z
    
 (3.31)

We assume  that  the  envelope  function  z is continuous at 0z  . We next suppose that, in

fact,  m z and  V z change very rapidly but continuously over a small distance 2z   (Fig.

3.15).

Figure 3.15. The quantities  m z and  V z show smooth  but rapid variation  over a small

distance  on either side of the interface,  at 0z  .



61

We now take the wavefunction (x, y, z) e e (z)yx
ik yik x   and then integrate the effective mass

equation Ĥ E  from z   to z   :

       0

1d d
dz V E

dz m z dz






       





                  
 (3.32)

We now let 0  . Since 0V ,  and E are all finite, the two terms multiplied  by  both

approach zero as 0  . Thus, the first term on the left in (3.328) must also approach zero,

giving

1 2

1 20 0

1 1

z z

d d

m dz m dz

 

 

 (3.33)

This suggests that the proper boundary conditions, at the (plane) interface ( 0z  ) between

materials  1 and 2, are

    1 2
1 2

1 20 0

1 1
0 0 ,

z z

d d

m dz m dz

 
 

 

  (3.34)

3.6 Quantum Wires

Above we have considered confinement of electrons to two dimensions. To create systems of yet

smaller  dimension,  it is usual  to  start  with a well-confined two-dimensional  electron  gas, so

tightly confined that  electrons are present  in only a single energy  level. A  new  confinement  is

then  imposed  on  this  system,  in  a direction  perpendicular to the original  confinement  (Fig.

3.16). A direct way to do this lateral confinement is by cutting  the material  containing  the

2DEG,  for instance by etching, to remove all but a thin strip of the 2DEG  (a typical width L
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might be approximately 1000 A. The electrons, now confined in two dimensions but free to

move in the third, form a quantum wire.

The simplest theoretical picture of such a quantum wire is given by the confinement of an ideal

two-dimensional electron gas in an infinite square  well. Figure 3.17 illustrates  the

wavefunctions  of the first two quantum states  of such  a quantum wire. The  original  2DEG

lies in the  plane z = 0, with the additional confinement  in the x-direction.  The energies of x-

confinement are

(3.35)

and the total  energy  is

2 22 2 2

22 * 2 *x z y

yx
n n k

kn
E

m L m


 

 (3.36)

In this formula first terms corresponds to confined motion, the last one to unrestricted motion in

y-direction.

Figure 3.16 A two-dimensional electron gas as the basic ingredient  for forming a
quantum wire.

2 2 2

22 *x

x
n

n
E

m L




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Figure  3.18 shows the density of states  g E for such an ideal quantum wire.  g E shows the

characteristic  singularity  in
1 2E which was derived for a 1DEG in equation  (3.14). In a

quantum wire, such a singularity will occur at each energy nE of quantization in the x-direction.

For  real quantum wires, the spacing of the quantized  energies nE , and the corresponding

wavefunctions,  will depend  on the precise shape of the potential  ,V x y , just as they

depended,  for a 2DEG,  on the shape of the potential  V z .

Figure 3.17 Wavefunctions for an electron in an ideal quantum wire. An ideal 2DEG in the
plane z = 0 has undergone  additional confinement  by infinite potential  steps in the x-direction

Figure 3.18.    Density of states for an ideal one-dimensional quantum wire.
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This density of states can be written as

 
1/2 1/2(2 ) (E E )

(E E ),

1, E
(E E )

0, E

x y

x y

x y

x y

x y

x y

n n

n n
n n

n n

n n
n n

m
g E

E

E







 

   

 

3.7      Quantum Dots

Electrons can be confined in all three dimensions in a “dot” or “quantum box”. The situation is

analogous to that of a hydrogen atom: only discrete energy levels are possible for electrons

trapped by such a zero-dimensional potential.  The spacing of these levels depends, as always, on

the precise shape of the potential. The  development  and  application of quantum dot  systems is

an  increasingly important research  topic  at  the  time of writing  for  a number  of reasons,

both technological  and theoretical. Figure 3.19 presents schematic image of quantum well,

quantum wires, and quantum dots.

Figure  3.19 Cartoon  of confinement along 1, 2 and 3 dimensions.  Analogous to a quantum
well, quantum wire and quantum dot.
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For quantum dots of rectangular shape (with sizes d1, d2, d3) motion is quantized in all three

dimensions. Energies and corresponding wave functions are given by

1 2 3

1 2 3

2 2 22 2 2 2 2 2
31 2

2 2 2
1 2 3

31 2
1 2, 3

1 2 3

2 * 2 * 2 *

sin sin sin , 1,2,3.....

n n n

n n n

nn n
E

m d m d m d

nn n
x y z n n n

d d d

 

 


  

    
     

     

 

(3.37)
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Chapter 4  Electrons in low Dimensional Structures of different shape

and material distribution

Electronic states in quantum structures are strongly influenced by shape of structures and

material distribution profile.  In this chapter we consider spherical quantum dots and cylindrical

nanowires, as well as quantum wells with confinement potential of non-rectangular shape.

4.1 Electrons in an Infinite Spherical Box

Consider a particle of mass m and energy 0E  moving in the following simple central

potential (Figure 4.1):

 
0 0 r a

V r
otherwise

 
 

(4.1)

Figure 4.1 Infinite spherical box
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Clearly, the wavefunction  is only non-zero in the region 0 r a  . Within this region, it is

subject to the physical boundary conditions that it be well behaved (i.e., square-integrable)

at 0r  , and that it be zero at r a . The wavefunction is to be written in the standard form – as

a product of radial and angular part (for details see textbooks of Quantum Mechanics)

   , ,, , ,n l l mr R Y     (4.2)

where  , ,l mY   is a spherical function; , ,r   are spherical coordinates. Taking into account

that Hamilton operator in spherical coordinates can be written as

 
2 2 2

2 2 2

2

2

L
H V r

m r r r r

  
       

 


(4.3)

where L


is an angular momentum operator

   2 2
, , 1l mL Y l l   


 (4.4)

we  obtain the equation for the radial part of the wave function (4.2)

 2
, , 2

,2 2

12
0n l n l

n l

d R dR l l
k R

dr r dr r

 
    

 
(4.5)

In the region 0 r a  ,   where

2
2

2mE
k 


(4.6)

Defining the scaled radial variable z kr , the above differential equation can be transformed

into the standard form
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 2
, ,

,2 2

12
1 0n l n l

n l

d R dR l l
R

dz z dz z

 
    

 
(4.7)

The two independent solutions to this well-known second-order differential equation are

called spherical Bessel functions, and can be written as

 

 

1 sin

1 cos

l
l

l

l
l

l

d z
j z z

z dz z

d z
y z z

z dz z

       
   

        
   

(4.8)

Thus, the first few spherical Bessel functions take the form

 

 

 

 

0

1 2

0

1 2

sin
,

sin cos
,

cos
,

cos sin

z
j z

z
z z

j z
z z

z
y z

z
z z

y z
z z



 



  

(4.9)

These functions are also plotted in Fig. 4.2. It can be seen that the spherical Bessel functions are

oscillatory in nature, passing through zero many times. However, the  ly z functions are badly

behaved (i.e., they are not square-integrable) at 0z  , whereas the  lj z functions are well

behaved everywhere. It follows from our boundary condition at 0r  that the  ly z are

unphysical, and that the radial wavefunction ,n lR is thus proportional to  lj z only. In order to

satisfy the boundary condition at r a [i.e., , 0n lR  ], the value of k must be chosen such
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that z ka corresponds to one of the zeros of  lj z . Let us denote the n th zero of  lj z as ,n lz .

It follows that

, , 1, 2,3...n lz ka n  (4.10)

Hence, from (4.6), the allowed energy levels are

2
2

, , 22n l n lE z
ma




(4.11)

The first few values of ,n lz are listed in Table 1. It can be seen that ,n lz is an increasing function

of both n and l .

Figure 4.2 The first few spherical Bessel functions.
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We are now in a position to interpret the three quantum numbers - n , l , and m --which determine

the form of the wavefunction specified in Eq. (4.2).  The azimuthal quantum number m

determines the number of nodes in the wavefunction as the azimuthal angle  varies between 0

and 2. Thus, 0m  corresponds to no nodes, 1m  to a single node, 2m  to two nodes, etc.

Table.1 The first few zeros of the spherical Bessel function  lj z

n=1 n=2 n=3 n=4

l=0 3.142 6.283 9.425 12.566

l=1 4.493 7.725 10.904 14.066

l=2 5.763 9.095 12.323 15.515

l=3 6.988 10.417 13.698 16.924

Likewise, the polar quantum number l determines the number of nodes in the wavefunction as

the polar angle  varies between 0 and . Again, 0l  corresponds to no nodes, 1l  to a single

node, etc. Finally, the radial quantum number n determines the number of nodes in the

wavefunction as the radial variable r varies between 0 and a (not counting any nodes at 0r 

or r a ). Thus, 1n  corresponds to no nodes, 2n  to a single node, 3n  to two nodes, etc.

Note that, for the case of an infinite potential well, the only restrictions on the values that the

various quantum numbers can take are that n must be a positive integer, l must be a non-

negative integer, and m must be an integer lying between l and l . Note, further, that the

allowed energy levels (4.11) only depend on the values of the quantum numbers n and l .

4.2 Electrons in an Infinite Cylindrical Box

Let’s  first consider ideal system - particle in cylindrical box with infinite walls,  so it is

assumed  that potential energy is 0 inside the box and infinity outside the box. In this case we
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only need to solve Schrodinger equation only inside the box, outside the particle wave function is

equal to zero (Figure 4.3).

In cylindrical coordinates the Schrodinger equation for 0potV  has the form:

2 2

2 2 2 2

1 1 2

   

mE

z h


    
     

            
(4.12)

let

2
2

2mE
k

h
 (4.13)

than

2 2
2

2 2 2

1 1

   
k

z


    
     

           
 (4.14)

We can represent

2 2 2 2
z zk k k k  (4.15)

Figure 4.3 Infinite cylindrical box
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(4.16)

and separate z  and (,) variables:

2
2 2

2 2

1 1
( )

    zk k  
    
    

         
(4.17)

2
2

2 z

d
k

dz


  (4.18)

As known, the solution of eq. (4.18) is

  2
sin zn

z z
l l


  (4.19)

1,2,3, .zn  

This function describes z motion of particle, which brings part in total energy.  Here l is

length of wire. If it is too long we can represent z motion as motion of free particle:

  1
zik zz e

l
  (4.20)

In Equation (4.17) , variables  can also be separated.  If we multiply the both sides on 2 ,

represent

     , P Q     (4.21)

and replace 2 2 2 2 2 2
z zk k k k m m     we obtain separate equations for  and :

     , , ,  z z      
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2
2

2
0

Q
m Q



 


(4.22)

 
2

2 2 2 2 2
2

0z

d P dP
k k m P

d d
  

 
         

(4.23)

The solution of (4.22) is

  imQ Ce   (4.24)

Because of the requirement of periodicity    2Q Q    m get the values: 0, 1, 2m    .

Normalization condition makes
1

2
C


 .

By changing variable

2 2
zk k    (4.25)

equation (4.23) in transformed into

 
2

2 2 2
2

0
d P dP

m P
d d

     (4.26)

The solutions of (4.26) owing desired behavior in zero is first kind Bessel function  mJ  . The

second Bessel function that satisfies equation (4.26) has singularity in the origin (Fig.4.4). As our

wave function should vanish at the surface of the cylinder, we are interested in solution whci has

correct behavior at the origin. Substituting (4.25) we obtain

     2 2
m m zP CJ CJ k k     (4.27)
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At a  (a is the radius of cylinder) wave function must be 0. This determines k and,

consequently E .

As

 2 2 0m zJ k k a 

2 2
,      z m nk k a   (4.28)

where α , is the n-th root of mJ function.   Substituting (4.28) in (4.13) we obtain the

expression for the total energy of a particle in a cylinder.

2
,2 2

2 2 2 22 2 2
,

2 22 2 2

m n
z

m n z

h k
a nh k h

E
m m m a l



 

 
 

       
 

(4.29)

The radial part of wave function can be written as:

    ,m n
m mP CJ CJ

a


  


 


 
 

(4.30)

C is determined from normalization:

, ,2

0

1
a

m n m n
m mC J J d

a a

 
   

   
   

   
 (4.31)

If we introduce new dimensionless variables radius:
a


  , and use the properties of Bessel

functions

   
1 22 2, , 2 '

  , ,

0 0 2

a
m n m n

m m m m n m m n

a
J J d a J d J

a a

 
         

                  
  (4.32)
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We obtain

 '
,

2

m m n

C
aJ  
 (4.33)

and

       ,'
,

2
m m n

m m n

P J
aJ

  
 

 (4.34)

Total wave function, as well as energy depends on three quantum numbers m , n and zn :

         , , ,   ,'
,

2
, , , sin

z z

im
z

n m n m n n m m n

m m n

ne
z J z

l la J

 
        

  
  (4.35).

The first few values of ,n m are listed in Table 2.

Figure 4.4 a) Bessel function of the first kind ; b) Bessel function of the second kind.



76

Table.2 The first few zeros of the spherical Bessel function  mJ x

n=1 n=2 n=3 n=4

m=0 2.4048 5.5201 8.6537 11.7915

m=1 3.8317 7.0156 10.1735 13.3237

m=2 5.1356 8.4172 11.6198 14.7960

m=3 6.3802 9.7610 13.0152 16.2235

4.3 The Effect of Material Distribution Profile

Very often in quantum structures composition variation takes place, which is connected to the

material inter diffusion. In this case band edges change smoothly across the interface and

confinement potential does not have rectangular shape. Figure 4.4 shows so called core-shell

nanostructures. In the nanostructure on left-hand side there is no diffusion of the shell material,

while in the nanostructure on right-hand side diffusion of shell material into the core material

takes place. Figure 4.5 presents material distribution in quantum dots.

Such systems are often modeled by parabolic potential. Pölsh-Teller type potential is also used

for modeling. These two potentials will be considered below.

Figure 4.4 core-shell nanostructure with different material distribution profile
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Parabolic potential

Parabolic potential can be written as

  21

2
V x kx (4.36)

This potential describes well confining potential formed by material diffusion in quantum

structures.

For this potential the Hamiltonian has the form

2 2
2

2

1

2 2

d
H kx

m dx
  
 

(4.37)

Thus, we have to solve Schrödinger equation

   
22

2
2

1

2 2 n

d x
kx E x

m dx


  


(4.38)

The equation is substantially simplified if make following notations

1/4

2

mk
x    

 
(4.39)

Figure 4.5 Material distribution in quantum dots, different colors correspond to different
composition
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2 nE





,

k

m
  (4.40)

In these notations equation (4.38) gets the following form

     
2

2
2

0
d

dx

 
      (4.41)

Let’s first consider the solution for large  .  It will be

 
21

2e


 


 (4.42)

Proceeding from the fact that the wavefunction must remain finite when   , only the

solution with “-” sigh will be used.

For arbitrary  the wave function can be written as a product of finite polynomial on (4.42)

   
21

2H e


  


 (4.43)

Substituting it into (4.41 we arrive at

       
2

2
2 1 0

d H dH
H

d d

 
  

 
    (4.44)

As mentioned above  H  is a finite polynomial

  2
0 1 2 ..... n

nH A A A A       (4.45)

If substitute the polynomial in (4.44) one can obtain the recurrent relation
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 
  2

2 1

2 1n n

n
A A

n n




 

 

(4.46)

If we want to make polynomial finite, it should be cut at some value of n , for this 2nA  Should

become zero while 0nA 
.
This will be guaranteed if

 2 1 0n    (4.47)

Taking into account that
2 nE







, the following expression is obtained for discrete energy levels

in parabolic well:

1

2nE n    
 

 (4.48)

The order of polynomial defines the number of levels. The higher n the higher the level, and

higher the order of the polynomial, and consequently corresponding wavefunction has more

nodes, as it should be.

Functions those are the solution of equation (4.44) and satify (4.46) recurent relation are

Hermitian polynomials, which is expressed by

     2 2

1
n

n

n

d
H e e

dx
    (4.49)

The first four lower order Hermitian polynomials are

0

1

2
2

3
3

4 2
4

1

2

4 2

8 12

16 48 12

H

H x

H x

H x x

H x x





 

 

  

(4.50)
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Figure 4.5 shows the first five states of electron in parabolic well. Energies and corresponding

wave functions are presented.

Pöschl–Teller Type Potential

Pöschl–Teller type potential also can be used for describtion material diffusion in quantum

structures (Figure 4.6). This potential is expressed by

Figure 4.5 a) energy levels of electron in parabolic well, b) corresponding wave functions
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0
2cosh

U
U

x
  (4.51)

We are interested in bound states, therefore the energies are negative and discrete.  For one

dimensional case the Schrödinger equation has the form

 2
0

2 2 2

2
0

cosh

d x Um
E

dx x




    
 

(4.52)

Let’s make the substitutions

 0
2 2

tanh

22
, 1

x

mUmE
s s

 


 




  
 

(4.53)

With these notations (4.52) equation gets the following form

   
2

2
2

1 1 0
1

d d
s s

d d

 
 

  
  

          
(4.54)

Figure 4.6 Pöschl–Teller potential
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This equation can be deduced to Hypergeometric form by

   
221


     (4.55)

If change the variable

  1 2 1u   (4.56)

we  arrive at

       1 1 1 2 1 0u u u s s               (4.57)

Solution of this equation is the Hypergeometric function. Therefore

   
22 1

1 , 1, 1, 1
2

F s s


              
(4.58)

For 1   (i.e x   ) the Hypergeometri function is finite, if  s n    is negative integer.

In this case F is a n -th order polynomial. Energy defined from the condition

 s n    (4.59)

is expressed by

 
2

2 2
0

2 2

8
1 2 1

8

mU
E n

m




 
      

 




(4.60)

The number of bound states is finite and is defined from the condition 0  , that is n s .
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Chapter 5 Electrons in Quantum Semiconductor Structures: More

Advanced  Systems  and Methods

In Chapter  4, low-dimensional  systems were discussed in terms of a single-electron picture, and

the behavior  of an electron was examined in the case that it is acted on by various potentials  in

semiconductors. Those potentials have been supposed to be externally imposed, for instance  by

a discontinuity  in the band  gap at an interface  between two materials.  But an electron will also

feel the effect of other electrons in the system in which it finds itself.

There are circumstances in which these many-electron effects can be ignored, for  example,  in

an  undoped  semiconductor with  very few free charges.  But in many cases, effects due to the

presence of other electrons can be extremely important. Some of the most interesting low-

dimensional systems involve many charges: there can be many free electrons, and there will

often be in addition some distribution of fixed charges (space charge). To study such systems

properly, we must discuss how to take into account the presence of such charges. The problem is

one of self-consistency because we are trying to predict the behavior  of electrons (or holes),

while that  behavior  will itself depend  upon  those  charges  whose behavior we are trying to

predict: in other words, the problem itself depends upon the solution  to the problem.

5.1 Many-body Effects, Hartree Approximation

Consider the reaction of conduction electrons to the presence of a potential well  0V z (we

suppose this to  be an externally  determined  well, e.g. a finite square well, which restricts

electrons into a two-dimensional region). Available electrons will be attracted to the well. Any

one electron will react both to  0V z and to the presence of all the other free electrons in the

system. (If the system responds  in such a way as to leave net fixed charges in some regions of

space, the electrons will also  interact  with  those  charge  distributions; we ignore  this  effect in

the  first instance,  but it can easily be included later).
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The  simplest  approximation which takes  into  account  the  presence  of many electrons  is to

assume that  the electrons  as a whole produce  an average electrostatic  potential  energy

function esV and  that  a given electron  feels the resulting total  potential, which is the sum of

the original  potential  and  this electrostatic potential

0 esV V V  (5.1)

This is the Hartree approximation. Since the external potential acts in the z-direction only, the

electron gas will be confined in z but will be uniformly distributed in the x- and y-directions, so

that  V V z . The electron wavefunction  is then obtained from the Schrodinger-like  envelope

function  equation

     
2

2 *

p
V z z E z

m
 

 
  

 


(5.2)

with V given by equation  (5.1).

The mobile electrons in the system all obey equation (5.2). They therefore form a static charge

distribution  z which is constructed from their wavefunctions.  It is this distribution of

charge which is responsible for esV , the self-consistent part of the potential.  Classically, the

relation between a charge distribution    and the electrostatic potential energy function esV

arising from  that  charge  is given by Poisson’s equation,

   2

0
es

e
V r r


 

 
(5.3)

where 0 is the  dielectric  constant  of free space  and e is the  magnitude  of the electronic

charge. Note that, in semiconductor physics, by convention, an increase in the magnitude of the

electron energy is taken as positive. In the present  case, the r - dependence specializes to a z-

dependence, while the fact that the electrons are in a semiconductor rather  than in free space is

taken into account  by inclusion of the static  dielectric constant 0r   of the medium  ( r is

the relative dielectric constant  of the medium  in question).  The relevant equation is thus

   
2

2
0 r

d V z e
z

dz


 
 (5.4)
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The self-consistent potential depends on the charge distribution, but that charge distribution

depends on :

  2

i
i

z e   (5.5)

where the sum is over all occupied states. This means that one must sum over each occupied

level n of the quantized system, and then integrate  over xk and yk up to the  Fermi  energy

FE ,  for  the  level  in  question   (i.e.,  over  the  energy  range F nE E for the level n ). If there

is also some distribution of fixed charges  , in the system then the potential depends on the

distribution   of all these charges,

  2

i d
i

z e    (5.6)

The space (or depletion)  charge density d will usually be the charge density of ionized

donors  or acceptors  in the system.

Thus,  will determine esV through equation (5.4), esV will determine b through equation (5.2),

 will determine  through (5.5) or (5.6), and so on. To solve this self-consistent problem, one

should start with some reasonable guess. It is common to start with 0 , the solution to the

problem of a single electron moving in the external potential 0V . The wavefunctions 0 give a

first approximation to the charge density using, say, (5.5). An approximate self-consistent

potential function esV is then obtained from Poisson’s equation (5.3), new wavefunctions are

calculated from (5.2) using the improved potential, and the process is repeated. The use of

computers  makes  it a straightforward matter  to  continue  this  process  until convergence  is

obtained, i.e. until  the electrostatic  potential  generated  from  the wavefunctions  is the same

potential,  to within a certain tolerance,  as that appearing in the Schrodinger  equation  for which

these wavefunctions  are solutions.
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5.2  Beyond  the  Hartree Approximation

The Hartree approximation treats the many-electron problem at the simplest level and is

adequate for many purposes.  The true solution to the problem, however, is given by the potential

0 es xcV V V V   (5.7)

Here, xcV is the correction to the potential due to exchange and correlation effects. That such

effects exist is evident simply from the Pauli Exclusion Principle — no two electrons can exist in

the same quantum state. The presence of an electron in a given state automatically excludes the

possibility of another electron being in the same state, and it can be thought of as exerting a sort

of repulsion on any other electron.  These exchange forces have not been included in the

discussion above. In practice, xcV stands for all those many-electron effects not included in the

Hartree approximation. There is no exact theory from which xcV can be derived. Exchange

effects alone  (those  due to  the Pauli  principle) can  be treated  by the Hartree-Fock

approximation, to be found  in standard textbooks,  but these corrections are rather  cumbersome

to calculate.  A more productive approach seems to be that of the Thomas-Fermi approximation,

or its modern extension, density functional theory.  Since these corrections are often  small in

practice,  we do not consider  them further  here.

5.3 The 2DEG at  a Heterojunction Interface

An interface between two different semiconductor materials can result in a naturally occurring

quantum well and one that is extremely important in practice. Consider a single plane interface

between GaAs and AlGaAs of the type previously discussed.  We suppose that the AlGaAs is n-

doped, while the  GaAs  is undoped  (Fig. 5.1). This is known as modulation doping.
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The situation  shown in Fig. 5.1 is physically impossible in equilibrium,  because in equilibrium

the  system as a whole must  have  a common  chemical  potential which, in this case, is the

Fermi  energy FE . Thus, if such a system is created, it must be unstable. What will happen is

that electrons will be thermally excited into the conduction band of AlGaAs.  They will then

migrate into the adjoining GaAs, since there they can achieve states of lower energy (they will

lose energy, e.g. by collisions with phonons).  These electrons will thus leave behind in the

AlGaAs a lack of electrons, i.e. the ionized donors will no longer be screened by an equal

number of electrons, and the AlGaAs will acquire a net positive charge, which will build up as

more electrons move into the GaAs.  The mobile electrons which are now in the GaAs will be

attracted by the fixed positive charge in the AlGaAs, but will no longer have enough energy to

recombine with their ionized donors.  They will thus be trapped in the vicinity of the interface:

the band-edge discontinuity will prevent them from moving to the left, while the Coulomb

attraction of the net positive charge in the barrier material will keep them from moving very far

to the right. The process continues until the system reaches equilibrium and the electrons have

been trapped in a quantum well, forming a two-dimensional electron gas at the interface between

the two materials.

The charge distribution at such a heterojunction would thus be that shown in Fig. 5.2. The forces

resulting from this redistribution of charge are conventionally represented as a bending of

Figure 5.1 Band-edge diagram for a GaAs-AlGaAs interface  before  redistribution of charge has
taken place. Mobile electrons can easily be excited into the conduction band of the n-doped
AlGaAs, while the GaAs is undoped. vE and cE refer to valence and conduction band  edges,

respectively
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conduction and valence bands (Fig. 5.3). The slope of the bands in the neighbourhood of the

interface is proportional to the electric field there. Donor states higher than  the Fermi  level

must  be unfilled (the region  of positive space-charge  in the AlGaAs).  Conduction-band states

below the Fermi energy must be filled (electrons in these states, in the GaAs, form the 2DEG).

The electric field must be continuous across the interface, as shown by the equal band-edge

slopes in the two materials  there (we will ignore the small change in electric field caused  by the

slight difference between  the dielectric constants  of the two materials).  However, the electric

field must be zero far from the interface, since there the materials are required to have their

original bulk properties.  (We assume that no external potential has been imposed on this

system.)  We see that  self- consistency is vital for a correct description of this system, since only

if the charge due  to  the  electrons  themselves  is included  in  the  potential   will the  potential

correctly  go to zero at infinity.

Figure 5.2 Charge distributions in a simple heterostructures
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This type of quantum well is among the most widely used and studied, occur ring in slightly

different forms with different names but with broadly similar characteristics. Two of these are

the MOSFET (metal-oxide-semiconductor field effect transistor) and the MISFET (metal-

insulator-semiconductor FET).  These systems (Fig.5.4) have the useful property  that  the

number  of electrons  in the 2DEG  can be controlled  experimentally.  The metal layer forms a

gate, the potential of which can be varied so as to attract electrons to the surface of the p-doped

Si. When the attraction is strong enough that the conduction band is bent  well below the Fermi

energy, a quantum well is again  formed  and  electrons  will be trapped  in a 2DEG,  as shown in

Fig. 5.5. Here, the depth of the well, and thus the number  of  electrons  that  can  be  trapped   by

Figure 5.3 A 2DEG in a heterostructure
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it,  is regulated  externally  by  the potential  on the gate.  The electrons form an inversion layer,

so called since the normal state of affairs in a p-doped semiconductor is for current to be carried

by mobile holes, rather than electrons.

Other similar systems go by the names HEMT (high-electron-mobility transistor) and MODFET

(modulation-doped field-effect transistor), and have been used to obtain 2DEGs of very high

mobility.  Such systems are particularly good for the investigation of phenomena such as the

(fractional and integer) quantum Hall effect. One way in which the mobility of two-dimensional

electrons in these systems has been improved is by inserting a spacer layer between the doped

region  and  the 2DEG,  as illustrated  in Fig. 5.6.

Figure 5.4 Schematic diagram of a MOSFET.
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Figure 5.5 Band-edge  diagram  for the MOSFET system of Fig. 5.4

Figure 5.6 Charge distribution in a MODFET (modulation doped field effect
transistor).
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5.4 The Ideal  Heterojunction

Predicting the properties of a 2DEG at a heterojunction is usually a process that involves full-

scale computation. Nevertheless, the appropriate starting point is in the simplest possible

description of the system. The starting point usually chosen is that of an infinite triangular well

(Fig. 5.7). Here the band-gap discontinuity at the interface, to the left, is approximated by an

infinite potential step, while the conduction band edge is assumed to have a constant slope

corresponding to the value of the confining electric field which is present at the interface.

This approximation is simple enough to allow closed-form solutions, which are Airy functions.

As one would expect, the electron energies are quantized, and the electrons themselves are

confined to a narrow region to the right of the interface.  The predicted electron states  spread

Figure 5.7 The infinite triangular well. The rounding  of the band edge to the right of the diagram  is
drawn  to  correspond to  physical  expectations,   while  electron  energies  and wavefunctions  are
calculated  assuming  a strictly  linear  potential,  to  this approximation; E is the electric field at the
interface.
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out  progressively  in each  higher-energy  quantum level. All these properties   are  physically

correct  at  a  qualitative   level,  but  they  can  also  be taken  to be a reasonable  physical

approximation if there is a relatively low electron  density in the 2DEG.

Since even Airy functions involve the use of tables, or calculations, it is useful to have on hand

an approximation technique which can often be used in conjunction with simple physical

approximations for the system of interest, to obtain quick, approximate, and often simple

numerical predictions.  The following section discusses two such techniques.

5.5       Some Calculational Methods

In this section we consider two methods which can give surprisingly good approximate

predictions  for low-dimensional  structures  in which quantum mechanical effects are important:

the Wentel-Kramers-Brillouin (WKB) approximation and the  Thomas-Fermi approximation.

They  are  simple  enough  to  be  used  either separately  or  together,  and  can  sometimes  give

analytic  answers  for  quantum energies and wavefunctions  in small structures.

The WKB approach is an approximate way of solving the Schrodinger equation and is

appropriate for systems in which many-electron effects are either weak or absent.  (It can also be

useful, as a first approximation, even when many-electron effects are important.) The  Thomas-

Fermi approach (in the  version  presented here) is an approximate way of taking many-electron

effects into account,  giving what  can be a very good  approximation to the full self-consistent

potential  felt by an electron  in the presence  of an external  potential  together  with the band-

bending  effects resulting  from  the  presence  of all the  other  electrons. An even better

approximation can be obtained when these methods can be combined, using the WKB

approximation to solve the Schrodinger  equation  for an electron in a self-consistent  potential

which has  itself been obtained  from  the Thomas- Fermi  approximation.
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The WKB Approximation

We  consider  here  a  method   for  calculating   approximate  wavefunctions   and energy  levels

which  is “semiclassical”, but  can  nevertheless  be  quite  powerful. This is the WKB

approximation. If many-body effects are neglected, the WKB approximation often leads to

analytic results, or at least to closed-form expressions (in which the answer can be obtained

numerically by doing a simple integral). Even in systems where many-electron effects are

important, the WKB approximation can yield useful information about the way in which

wavefunctions and energies depend upon the parameters of the system. Here, we do not  justify

the method  in detail,  but  merely present  the resulting  approximation procedure  in a way that

can be applied to systems of interest.

The WKB approximation is semiclassical: in some sense it can be thought of as an expansion

that is good when quantum effects are small. The procedure can be stated in terms of a classical

picture of the motion of a particle in a potential (Fig. 5.8). Classically, if a particle of energy E

moves in a potentialV , the particle can be found only in regions where E V . The turning points

of its motion (a, b in the diagram) are the points  at which E V (the particle  must turn  around,

since it cannot  proceed into a forbidden  region). If V were constant in each region (e.g. a finite

square well), the solution of the Schrodinger equation, , would be simply

, for

, for

ikz

i z

e E V

e E V






  


(5.8)

i.e. a travelling wave in the classically allowed region and a decaying exponential in the

classically forbidden  regions. If V is a slowly varying function of position, then one can try to

approximate  by a form similar to that of equation (5.8):

 iu ze  (5.9)
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where

 u k z dz  (5.10)

with

  1 21
2 , for

, for

m E V E V
k

i z E V

      
 
 (5.11)

so k is real in the classically allowed regions and purely imaginary in the classically forbidden

regions, as in equation  (5.8). The WKB approximation consists in expressing  as

 
 

( )i k x dxc
x e

k x


 
(5.12)

According  to this equation,  we can write  , for example,  in terms  of sines and cosines in the

allowed region, and real exponentials  in the forbidden  regions. It is then necessary to connect

these two sorts of solutions at the turning points a and b. The appropriate connection formulae at

the left-hand turning point (a, in Fig. 5.8) are

Figure 5.8 Turning  points a and b for a particle of energy E in a potential V
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Forbiden region Allowed region

1 1 1
exp sin

4

1 1 1
exp cos

4

a z

z a

a z

z a

dz kdz
k

dz kdz
k

 


 


   
     

   
   
     
   

 

 

(5.13)

and, for turning  points  like b (right-hand turning points),

Forbiden region Allowed region

2 1 1
cos exp

4

1 1 1
sin exp

4

b z

z b

b z

z b

kdz dz
k

kdz dz
k

 


 


   
     

   
   

     
   

 

 

(5.14)

These connection formulae apply  to turning  points  at which the potential  is in some sense

slowly varying.  Other  places at which one wants to apply  the usual boundary conditions are at

z   , where one specifies that  cannot correspond to  a state  that  is exponentially

increasing,  or  at  an  infinite potential  barrier  (a “solid wall”), where the wavefunction  is

required to vanish.

The arrows in equations (5.13) and (5.14) are not symmetric. This indicates that the  connection

between  the  indicated  expressions  is rigorous in  one  direction (double  arrow)  but  not  in

the other.  Thus, for example, an exponential with a negative coefficient to the left of the left-

hand  turning  point (a) will always imply the  existence  of  a  cosine-type  solution  to  the  right

of that  turning  point  (the second of equations  (5.13)), but the existence of a cosine-type

component to the wavefunction  to the right of a may not imply the existence of an exponential

of negative coefficient to the left. Care is needed in the direction  of the single arrows because

the method  is not  sensitive to the existence of extremely small terms in forbidden  regions (at

any appreciable  distance into the forbidden  region, a growing exponential  swamps a decaying
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one, so that,  if a growing one is present,  it is not possible to say whether  a decaying one is there

or not).

It is the matching  conditions  at the turning  points  and  other  boundaries that lead to

quantization of the energy: only for certain discrete values of E will it be possible to find a

solution  which can be matched  properly  for all z . Since the matching conditions are

approximate, however, the  quantized  values of E will also be approximate. Nevertheless, the

approximation often proves to be a surprisingly good one.  Note, too, that one has approximate

wavefunctions  (equations (5.13) and (5.14)) as well as approximate energies.

Examples

1. Infinite well (Figure 5.9 ) given by

   f , 0

, 0,

x x a
V x

x x a

  
   (5.15)

where  f x is slowly-varying function.

Figure 5.9 Infinite well with non-homogeneous bottom
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When  E V x the following expression is obtained for the wavefunction

 
 

   

 
    

0 0

' ' ' '

1 2

0

1

1
sin ' ' cos ' '

x x

i k x dx i k x dx

x

x C e C e
k x

C k x dx C k x dx
k x




 

       
 

  
   

   
 

(5.16)

This wavefunction has to satisfy the

   0 0a   (5.17)

Which means cosine terms will disappear in (5.16), the equating   the sine to zero gives

 
0

a

k x dx n (5.18)

For   0V x  exact solution can be obtained

2 2 2

22n

n
E

ma





(5.19)

which coincides to the analytical results for infinite rectangular well.

2. Arbitrary Shape Well

We are considering the well given on Figure 5.8. In this case,  must be a decaying exponential

as z  . This means that we must use the second of equations (5.13) and the first of

equations  (5.14). These formulae  give two different cosine expressions for  the  wavefunction;

the  condition   that  these  expressions  must  be  the  same imposes a condition  on the

arguments  of the cosines, which produces  the quantization  condition,
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   1/21
2 1/ 2

x b b

a x a

kdx kdx m E V dx n          (5.20)

where n = 0, 1, 2,      This condition  is, in fact, the Bohr-Sommerfeld quantization condition,

that a particle’s orbit in phase space must equal a half-integer multiple of  . This is essentially

a condition for a standing wave.

3. Triangular well

We are calculating a bound  states in a  triangular potential  well as,  for  example,  the  simple

picture  of an inversion  layer (Fig. 5.10), for which the potential energy function V is given by

 
e z, 0

, 0

z
V z

z

   
  (5.21)

where  denotes the magnitude  of an electric field. The wavefunction  must decay exponentially

for positive z in the forbidden  region and in this case must vanish identically at z = 0. In the

classically forbidden region where z > 0, we must use the first of equations (5.14). Then, for the

cosine function to vanish at the origin, we must require that

 3 / 4 0,1, 2.....
b

a

kdz n n   (5.22)

from which it is simple to show that  the quantized  energies nE are, in this approximation,

given by

 
1/32 2 2

2/3
3 / 2(n 3 / 4)

2n

e
E

m

 
  
 


(5.23)

The WKB approximation has given us not only approximate values for the energy levels,

equation, but also approximate wavefunctions,
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 
 

 1 1
sin ' '

4

z

a

z k z dz
k z

 
 

  
 
 (5.24)

example of a triangular potential  well is often used as the starting  point for a treatment of two-

dimensional electrons  in an inversion  or accumulation layer.

Finally,  we note  that  the  WKB  method  as  discussed  here  does  not  include many-electron

effects,  since  it  assumes  that   the  confining  potential   is known  in  advance.  To generalize

to  many-electron   systems,  one  can  use  the WKB method as part of an iterative solution

together with the Poisson equation. Alternatively, one can use the WKB method to solve a

Schrodinger equation with an approximate but self-consistent potential obtained from a

Thomas-Fermi approximation.

5.6 The 2DEG in Doping Wells

So far we have discussed compositional quantum wells  and quantum wells at heterojunctions.

Another  important example is that of doping wells (Fig. 5.11). Consider an intrinsic

semiconductor (e.g. GaAs), grown one plane atomic layer at a time, which has been uniformly n-

doped in a slab of width d during growth. Suppose that all donors have become ionized. The

resulting positive charge of these donors creates an attractive  force which is then felt by the

Figure 5.10 Triangular potential well at an infinite potential barrier.
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mobile (donated)  electrons,  which are trapped  by that  force. The attraction can easily be strong

enough, over a short enough distance d, that quantum effects are important. This is yet another

kind of two-dimensional electron gas.

The charge density of the donors is assumed to be

   dz en z  (5.25)

where the donor  doping density dn is constant  for 0 1 2z d  and the potential energy

function V of these   donors  create is given by Poisson’s equation:

 
2

2
0r

d V e
z

dz


 
 (5.26)

This equation is easily solved: if the second derivative of V is constant, it must be quadratic in

z ,

2V a bz cz   (5.27)

We can choose a to be zero since the choice of a zero of energy is always arbitrary. Moreover, if

we choose the doping slab to be centred at z = 0, as in Fig. 5.11, then b = 0 from symmetry.

Thus,

 
2

2

0

, 0 1 2D
r

e
V z n z z d

 
   (5.28)

which yields a parabolic  potential  well within  the region  of donor  doping.  The potential in

the undoped  regions is even more straightforward: in a region of zero charge, the right-hand side

of equation  (5.26) must be zero, and the potential  must therefore  be linear in z (and symmetric

in z):

' 'V a b z  (5.29)

Here 'a and 'b are determined  from equation  (3.24) at
1

2
z d  using the fact that the

potential  must be continuous. One easily finds that
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22 2

0 0

1
' , '

2 2 2D D
r r

e e
a n d b n d

   
    
 

(5.30)

The resulting The resulting  quantum well is shown in Fig. 5.12

If electrons are actually trapped in the well, then their presence will modify this potential   (self-

consistent effects). Ignoring these corrections,   the energies  and wave functions  for electrons

in the well are easily obtained, e.g. from  the WKB approximation. In the region
1

2
z d the

potential  is that  of a simple harmonic oscillator,    for   which   the   WKB   approximation

gives   the   exact   answers. Thus, for instance, the energies are given by

1
, 1, 2,....

2nE n n     
 

 (5.31)

where the “natural  frequency”  is

1 22

02
d

r

e nk

m m


 
 

   
 

(5.32)

Figure 5. 11 Donor  density  profile:  a  uniformly  n-doped  slab  creates  a  potential  well within
the host material.
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Self-consistent effects can modify this potential in important ways. First,  V z itself will be

changed  if electrons  are  present  in the well. Secondly, the ionized donors themselves are more

a random collection of point charges than a continuous uniform charge distribution. This

randomness results in fluctuations in the potential  V z . Electrons trapped in the well will tend to

redistribute themselves in such a way as to reduce these potential fluctuations, thus screening out

some of the effects of disorder.

5.7 The Delta Well

An extreme example of a doping  well is a delta well, formed  when the layer of donors  in a host

material  is as small as one atomic  layer wide, approximately a delta-function distribution in z.

(These are also called delta-doped, or spike-doped, systems.) One can therefore write

   Dn z D z (5.33)

Figure  5.12.    Quantum well created  by the  donor  doping  profile  of  Fig.  5.11
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where D is the  number  of  ionized  donors  per  unit  area  in  the  host  material. Poisson’s

equation then gives the very simple potential energy function

 V z a b z  (5.34)

with a chosen to be zero for convenience, and

2

02 r

e D
b

 
 (5.35)

This potential is given in Fig. 5.13.

In this case the WKB approximation gives the energy levels

1 3 2 32 2 3 1

2 4 2n

b
E n

m


            


(5.36)

As always, this can be the starting point for a better approximation, which must include self-

consistent effects if electrons are in fact trapped in the well. These effects can be quite important,

particularly for high dopin. Here, the number of electrons trapped by the well equals the number

Figure 5.13 Bare potential  for a delta well.
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of donors,  and the potential  (heavy black line) is seen to differ considerably  from the linear,

“bare” potential  shown in Fig. 5.13.

We digress briefly here to  note  that  delta-doping can  be used,  among  other things, to create

high electron  mobility  devices, starting  from a basic accumula- tion or inversion 2DEG.

Figures 5.1 and 5.2 show how electrons in such a 2DEG can come from nearby ionized donors.

One is then often interested in the mobility of these electrons in the two-dimensional plane in

which they are free to move.

Figure 5.14 Energies  and  electron  probability-densities for  a delta  well in InSb  (self-
consistent  calculation;  probability densities are each normalized  to unity).
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This mobility  can be severely limited by the scattering  of electrons from ionized impurities. In

the situation  illustrated  in Figs. 5.1 and 5.2, a large number of these impurities  lie very  close to

the  plane  of  the  2DEG  and  will strongly  limit  its mobility.  The mobility  of the 2DEG  can

be increased  by placing a spacer layer between  the  donors  and  the  plane  of  the  2DEG,

thus  making  the  scattering centres more distant.  If the donor region is made into a delta-layer,

this scattering can be reduced still further (Fig. 5.15). Here,  any free charges to the left of the

interface  will be tightly  bound  to  the  donor  layer,  and  will tend  to  screen out disorder  due

to the random  positions of the donors.  This will help to produce an approximately uniform

charge distribution, further reducing ionized impurity scattering.

5.8  The Thomas—Fermi Approximation for Two-dimensional Systems

The Thomas-Fermi approximation allows one to  take  account  of many-electron  effects on the

potential  felt by a single electron (in other  words, it can give an approximate way of calculating

Figure 5.15 Charge  distribution in a high mobility  electron  gas created  at an interface
with delta donor  doping.
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band-bending effects caused by the presence of many electrons or holes). This approximation

can provide a very good description of the potential for the particular cases of heterojunctions,

accumulation and inversion layers, and delta-doped systems in the presence of many-electron

effects, and in some cases provides simple analytic formulae for the potential. Its use for other

systems may be less straightforward.

When  it can  be used  in this  way, the  Thomas-Fermi approach provides  an approximate

alternative  to obtaining  a self-consistent iterative solution of coupled Poisson  and  Schrodinger

equations,  as described  in the  preceding  section.  An early reference to this use of the method

is given by Keyes (1976), whose approach we follow here.

We take the potential felt by an electron in a quantum well to be a sum of several parts:

tot ext fixed eV V V V   (5.37)

where extV t is the external potential  (the band-edge potential  in the absence of free charges, and

of any applied  electric field), fixedV is the potential  due to any fixed space-charge distribution in

the system, and eV the self-consistent contribution to the potential  (arising from the presence of

mobile electrons in the system).

In terms of the density  en r


of mobile electrons, the self-consistent part of the potential  obeys

Poisson’s equation

     
2 2

2
0

tot
e A D

r

d V e
n r n r n r

dz  
    
  

(5.38)

where An and Dn are the densities  of charged  acceptors  and  donors, respectively. We next

suppose that  there are a number  of mobile electrons in the system,  and  use the  familiar

relation  between  Fermi  level (measured  from  the conduction band  edge) and three-

dimensional electron density, en

 
2

2 32 2 33
2 *F eE n

m



(5.39)
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which follows from the three-dimensional density of states. Here, FE is understood to mean the

difference between the Fermi energy and the total band-edge   potential totV .  Since     depends

on  position,   we  write  equation (5.39) as

     
2

2 3 2 323
2 *F tot eE V z n z

m
 


(5.40)

If we choose our zero of energy to lie at FE , we then obtain

     
2

2 3 2 323
2 *tot eV z n z

m
 


(5.41)

which can be rearranged to

 
3 2

3 2

2 2

1 2 *

3e tot

m
n V


   
 

(5.42)

We can now obtain  an approximation for totV if we restrict ourselves to external  potentials

which  are  either  linear  or  constant   in  growth  direction z. This includes inversion and

accumulation layers and  delta-doped systems  when  no space charge is present.  (It can also be

a reasonable first approximation even in the presence of space charge, since such charge is often

distributed over lengthscales much larger than that  of the quantum well in question,  giving a

relatively weak contribution to the band  bending).

We thus consider Poisson’s equation  (5.38) and note that,  since extV is assumed to be a straight

line and fixedV is neglected here,

2 2

2 2
sc totd V d V

dz dz
 (5.43)

Thus we can combine equations  (5.38) and (3.39) to eliminate en (which is not yet known),  to

obtain

 
3 22

3 2

2 2 2

1 2 *

3
tot

tot

d V m
V

dz 
   
 

(5.44)
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This is a differential equation which can be solved for the self-consistent band-edge potential

totV . Note that totV itself is negative: the approximation refers to systems which contain mobile

electrons, and does not apply when there are none (i.e. when 0totV  ).

5.9  The Thomas—Fermi Approximation for Heterojunctions and  Delta Wells

The Thomas—Fermi approximation of equation  (5.44) is found  to have a simple analytic form

when applied to heterojunctions or delta wells with no background doping.  It is easy to verify

that (5.44) is satisfied for a potential of the form

 
 40

1
V z b

z z
 


(5.45)

where b and 0z are positive constants, and the interface (or the position  of delta-doped  layer) is

at 0z  . A few simple manipulations show that in this case

2 32 2
2

2

60

2 *
rb

e m

     
    

  


(5.46)

and 0z is determined  by a boundary condition  (e.g. at 0z  ) for the particular system of

interest. Since totV is given explicitly by (5.45) and (5.46), one also has an explicit form for the

density en of mobile electrons from equation (5.42),

 

3 2

6 2

0

2 *
,e

a m b
n a

z z

    
  

(5.47)

This charge density can be a very good approximation to that obtained from a full self-consistent

solution of Schrodinger’s and Poisson’s equations.

One can now obtain (approximate) energy levels and subband occupations by solving the

Schrodinger equation, using the approximate potential totV obtained by this procedure.  The exact
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self-consistent solution can also be obtained from this starting point, thus saving much

computing time.

When the  potential   approaches zero  as 0z ,  one  boundary condition   is needed to fix the

single unknown 0z . This may be, for instance, the electric field at the interface (i.e. the slope of

the potential there), or the value of the band-edge potential at 0z  , or else the total two-

dimensional density of mobile electrons in the system. In the more general case in which the

system is not  charge-compensated, for instance by removing mobile electrons from the system

by some external mechanism,  the situation  is slightly more  complicated,  but  an  explicit

analytic solution  can still be found.

5.10  Excitons in Hartree Approximation

Exciton is a electron-hole pair bound by Coulomb interaction. In bulk crystals in the frame of

effective mass approximation the effect of ions of crustal lattice on the motion of electrons and

holes is included in their effective masses. Therefore the Hamilton operator of electron-hole pair

consists of terms corresponding to their energy and the term that describes their Coulomb

interaction.

2 2 2
2 2

2 2e p
e h e h

e
H

m m r r
     



     (5.48)

By means of the usual procedure we can separate motion of exciton as whole form electron-hole

relative motion. For this we change variables

,e e h h
e h

e h

m r m r
R r r r

m m


  



    
(5.49)

In these variables (5.48) operator gets the following form

 
2 2 2

2 2 ,
2 2

e h
R r

e h e he h

m me
H

m m m mr r



      

 

     (5.50)
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The eigen functiona and eigen values of this operator are

 

 

,

2 4

, 2 2 2

1
,

2 2

i K R
K n n

K n n n
e h r

e F r

K e
E E E

m m n




 

 
       

  



(5.51)

In quantum structures new terms those describe confinement of electrons and holes are added to

(5.50) Hamiltonian. In most semiconductor materials, these terms influence the motion of

electron and holes much stronger than Coulomb interaction between them. Therefore, usually

first are calculated single-particle states of electrons and holes, and than interaction between

them is accounted in different approximation. That is why in total Hamiltonian single particle

terms are separated:

2 2 2 2
2 2

2 2e p oe oh e h
e h e h e h

e e
H V V H H

m m r r r r
          

 

       (5.52)

The procedure in Hartree approximation is as follows:

First we solve single particle problem for holes

0o o
h h h hH E  (5.53)

Than Coulomb term is averaged by o
h functions, and obtain effective potential for electrons

 
2

e o o
eff e h h

e h

e
V r

r r
  




  (5.54)

and solving single particle problem with Hamiltonian with this effective potential

  0e o o
e eff e e e eH V r E  


(5.55)

We obtain electron wave functions in zero order of approximation.
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After this we again average Coulomb term over obtained at the previous stage electron wave

functions:

 
2

h o o
eff h e e

e h

e
V r

r r
  




  (5.56)

then solve single particle problem for (5.56)

  1 1 1h
h eff h h h hH V r E  


(5.57)

This procedure is continuing until desired convergence is obtained.

Finally energy is expressed as

2
n n n n

e h e h e h

e h

e
E E E

r r
     


  (5.58)

Where (h)
n
e are single particle wavefunction obtained at the nth stage.
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Chapter 6 Superlattices

A superlattice  is a semiconductor structure  created in such a way that  periodicity is

imposed  on  the  system  during  growth.  This  periodicity  typically ranges  from  tens

to  thousands of angstroms,  so that  it includes  at  least a few periods  of the  natural

crystal  structure,  but  is small  enough  so that  quantum effects are important. These

are thus mesoscopic structures.  A simple example is a compositional superlattice,

consisting of periodically alternating plane layers of, say, AlGaAs  (A) and GaAs (B)

(Fig. 6.1). The electronic periodicity is provided by the alternation of the conduction and

valence band edges, as shown in Fig. 6.2. A superlattice creates a new kind of electronic

raw material.  The fact that it is a grown structure means that there is great freedom in

creating a material with new sorts of electronic properties

Figure 6.1 The alternating band  edges provide  a periodic  array  of quantum wells
for electrons ( cE ) and holes ( vE ).
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6.1 Superlattices and  Multi-quantum-wells

When a superlattice contains widely spaced quantum wells, so that electron tunneling

from well to well is essentially prohibited, one can treat the array as a set of isolated

quantum wells. The energies and wavefunctions of electrons in each well will then be

determined just by the properties of an individual well. Such arrays (multi-quantum-

wells) are often used to enhance the signal obtainable from a single well. A  true

superlattice   is a  similar  system,  but  with  thinner  barriers (more  closely-spaced

wells), so that  there  is electron tunneling,  and  therefore good  communication, from

well to well. Some typical parameters are shown in Fig. 6.2.

There are two different ways of looking at a superlattice  which are illuminating, and

taken  together  give a good  picture  of the  system. The first of these is the picture of a

superlattice as a single bulk crystal with an additional modulation (periodicity) imposed

on it. The second is the picture of a collection of equally- spaced quantum wells which

are brought progressively closer together.

Crystal periodicity leads to the electron band structure observed in bulk crystals.

Superlattice periodicity likewise gives a band structure, for the same reasons. However,

since the  superlattice  spacing is greater  than  the  crystal  spacing,  the superlattice  k-

space dimensions will be smaller than those of the crystal. This new band structure will

be superimposed on the original bulk band structure, and will show up as a series of

minibands and minigaps which will be superposed on the original band structure of the

well material. These minibands and gaps result from zone folding: for  a  superlattice  in

which  the  wells contain M unit  cells in the growth  direction,   there  will  be  a  new

Figure 6.2 Band edges and miniband  energies for a typical superlattice,  with alternating
layers  of  GaAs   (wells)  and   Al0.11 Ga0.89 As  (barriers).   For   this case d1 = d2 = 90 A.
Miniband energies are E1 = 26.6 meV and E2 = 87 meV and  respective bandwidths are
ΔE1 = 2.3 meV, ΔE2 = 20.2 meV.
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superlattice  constant   in  this  direction which  is M times  the  atomic  one.

Associated  with  this  new periodicity,  there will be a new superlattice  Brillouin  zone

with  a size of 1/M times the  crystal Brillouin  zone.  It  is often  the  case that

1 1M  ,  so  that  many  of  the  new mini-zones  will fit  into  the  original  Brillouin

zone.  Thus,  the  band  structure shows its new periodicity  by breaking  up  into

minibands  and  minigaps whose scale is determined by the size of the superlattice

layers. Figure 6.3 illustrates this situation near the conduction band minimum of the well

material, where the band structure can be taken to be parabolic to a good approximation.

One can also consider superlattices as collections of identical, isolated quantum wells

which are brought closer together in such a way that they remain separated by equal

distances. Each single well has its own set of discrete energy levels from electron

confinement in the z-direction. If, for instance, one had started with only two such wells

separated by a very large distance, there would be some common energy E1, say, which

an electron could have by being in one well or in the other (a two-fold degeneracy).  As

these quantum wells are brought closer together,  interaction  between the wells

becomes possible, so  that  the  levels are  no  longer  degenerate,  but  have  energies

(E1 + Δ) and (E1 — Δ), where Δ increases from  zero as the barrier  width  decreases.

In place of a single degenerate level, one now has two levels, slightly split. The

communication between wells causing this splitting comes about because of the fact that

an electron confined in one well can really be present in the barrier region as well, with

a small probability. If the second well is near enough, the electron can also penetrate

into the other well (tunneling).  A steady-state description is that of two possible

Figure 6.3 Formation of minibands  and minigaps near the conduction-band minimum of a
direct-gap  semiconductor. The minizone  width 2r/d is typically much  less than  the Brillouin
zone width 2r/a, where a is a lattice constant.
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eigenstates of a two-well problem.  In each, the electron has equal probability of being

in either well, and the wavefunction is symmetric or anti- symmetric, in the state with

energy (E1 + Δ) or (E1 — Δ), respectively.

Since the energy splitting Δ is bigger if the amount of communication between wells is

greater, one finds that the splitting of a higher-energy level E2 > El will be greater than

that of a lower level. Higher-energy states have a higher probability of being present in

the barrier regions: they have longer tails and thus can ‘see’ the presence of other wells

more effectively. This in turn follows from the fact that, since the energy of such states

is higher, the effective barrier V — E through which they have to tunnel is lower.

Bringing many (N) identical wells together has a similar effect. In this case, a single-

well level El will be N-fold degenerate when the wells are far apart.  As they are brought

closer together in a uniform fashion, this degenerate level will split up into a set of

closely spaced levels (N of them). This set of levels can be thought of as a continuum -

a miniband.  One will have other minibands, corresponding to each of the original levels

of the single well. As in the two-well case, one expects higher-energy minibands to have

a greater bandwidth than lower-energy  ones. This can be a dramatic effect, as indicated

in Fig. 6.2. One can say that level broadening increases as tunneling becomes more

effective.

Miniband broadening is also indicated in Fig. 6.4, which shows the effect on the density

of states, for a  set of square  wells (as  in Fig. 6.2) brought close together into a

superlattice structure. Note the minibands  (a—b), (c—d ) and mini- gaps (b—c), and

the increase of the bandwidth with miniband  energy in Fig. 6.4.

Figure 6.4 Superlattice density of states (DOS) in relation to that  of a 3DEG  and of a2DEG  in a square
quantum well.



117

Miniband Properties: The WKB Approximation

The WKB model can give good physical estimates for superlattice properties,  if the

system has relatively thick barriers.  It also tends to give better than  expected results

for  more  general  systems.

Consider the N-well system shown in Fig. 6.5. When one treats this problem in the

WKB approximation, certain basic ingredients emerge:

 
n

n

b

a

k z dz   (6.1)

(an integral  over the allowed energy region in, say, the nth well), with

  1 21
2 *k m E V z   

(6.2)

and

 
1n

n

a

b

z dz 


  (6.3)

(an integral  over a single forbidden  barrier  region), with

  1 21
2 *m V z E    

(6.4)

Figure 6.5 Model  of a superlattice  potential,  with N equally-spaced,  equivalent  quantum wells
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Here, we want to describe the motion of an electron  with energy E in a system with,

say, the classical turning  points na and nb . As always, the confinement, and the

requirement that the wavefunctions match at the classical turning points, results in

quantization conditions, which may be written

1
cos

2 1

m
n e

N
 

             
(6.5)

where 1, 2,...n  and 1, 2,...Nm  The first term on the right-hand side of (6.5) is the

WKB approximation to the energy levels (labeled n) of an isolated well. The second

term describes how these single levels split into N sublevels (labeled m), thus forming a

miniband.  This term is small because of the exponential in  , so that the sublevels are

closely spaced.  Assuming such a small splitting of levels, one obtains from (6.5) the

quantized energies
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E E e

N
 


      


(6.6)

Here, 0
nE is the zero-order energy (coming from the first term on the right in (6.5)) and

 0
 is calculated using the approximate energy 0

nE in the definition (6.3). Finally,  ,

the frequency of classical motion in a single quantum well, is defined by

   0

* n

n

b

a

m dz

k z



  (6.7)

where  0k is calculated  from (6.2) using the approximate energy 0
nE .

These results give, among other things, the WKB approximation for the mini-band

width, which may be read off from (6.6). Since  2cos 1N  is the maximum

difference between the highest and lowest values of  cos 1m N  , when 1, 2,...Nm 

we obtain the bandwidth

 2cos 1nE e N



    


(6.8)

From this equation one can see how the bandwidth depends upon the single-well energy

level n from which that miniband arises. This dependence enters into the parameters 

and  of equation (6.8). The latter is by far the most important dependence, because it

appears as an argument of an exponential.  Explicitly, one has that
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    1 20 1
2 *

b

b

m V z E dz     (6.9)

It  is evident  that
 0

 will be smaller  (and  the  bandwidth greater)  when nE is

greater  (i.e. nearer  to V ). In this case the effective barrier V — E is lower, and thus

the  integrand  in (6.9) is smaller.  As shown in Fig.  6.6, a second effect usually

operates to increase the bandwidth with increasing n. The higher-energy states see a

barrier which is also thinner, since at higher energies the limits b and a are  often  closer

together.  Communication between  wells is of course  aided  by thinner  barriers.

6.2  Doping Superlattices

From  what has already  been said, it should be evident that  a superlattice can be

created by imposing a new periodicity  of any sort on a semiconductor. One such

example is the doping superlattice, first proposed by Dohler (1972) (see also Ruden and

Dohler,  1983). The idea is to introduce a new periodicity into a semiconductor by

doping it selectively, first by acceptors,  then by donors,  in repeated  plane layers, as it

is grown. The ionized impurities create repeated layers of negative (n) and  positive  (p)

space  charge  in the  conductor (Fig.  6.7), often  separated  by intrinsic  (i), or undoped,

layers. The periodically  repeating  electric fields which result  create  a superlattice  in

the semiconductor which, for obvious  reasons,  is called a n-i-p-i superlattice.

Figure 6.8 shows how such fields create a superlattice.  The electric field of the ionized

donors  creates a parabolic  quantum well for electrons within the n-doped region, as

Figure 6. 6 A single well and barrier,  for the superlattice  of Fig. 6.5. EO and E1 are
unperturbed WKB energies for a single well with infinitely thick barriers.
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previous chapter, while a parabolic  well for holes (an inverted parabola) is created  in

the p-type regions.

Figure 6.7 (a) Ionized impurities  introduced  in alternate  layers in a semiconductor. (b)
Possible doping profile leading to the space charge shown in (a)
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The charge density  of the impurities may be written  as

     0 D Az e n z n z     (6.10)

where Dn is the number of donors  per unit volume, An is the number of acceptors per

unit volume and z is the growth  direction.  The band-edge  potential  0V z is easily

calculated  from Poisson’s equation:
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(6.12)

for
1 1

2 2 pd z z d   , where we have set 0V  at the origin, which is taken to be the

middle of an n-type layer, and spacings pd etc. are defined in Fig. 6.7. In the intrinsic

regions, where there are no ionized donors, the potential must be a linear function  of z.

We assume that this basic pattern is repeated indefinitely.  The quantity 02v in equation

(6.12) is the  amplitude  of the  band-edge  modulation shown  in  Fig. 6.8.  Since the

Figure 6.8 Conduction and  valence band  edges in a semiconductor with  n-i-p-i-type
doping. Eg,eff is the effective band  gap.
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conduction band  edge  must  be  continuous  (as shown),  the parabolic  regions  in

(6.7) and  (6.8) must  be  joined  by  straight lines. This determines the depth of the

modulation:

2 22
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2 2 2D n A p D n i
r

e
v n d n d n d d

 

          
     

(6.13)

Note  that  if the  total  number  of  ionized  donors  in  one n-layer  equals  the number

of ionized  acceptors  in a p-layer, the electrons  that  have been released by the donors

will all reside on acceptors if the system is in its ground state. Thus,  the potential  that a

free electron would feel is indeed given correctly by equations (6.11)—(6.13). There

will be no free electrons in the wells to modify this potential with self-consistent effects.

The  WKB  approximation can  be  applied  to  the  parabolic   parts  of n-i-p-i quantum

wells to  predict  the  superlattice  energies. In particular, the  miniband splittings  and

miniband  widths  can be calculated, as described above. The unperturbed energies

(those for isolated wells), in particular, are given by

 0 1

2nE n    
 

 (6.14)

where,  as before,  given by (6.7), the  miniband  splittings  by (6.6), and  the

miniband  widths by (6.8). The calculation of these quantities  is straightforward, but

since the resulting  expressions are  rather  unwieldy,  they will not  be reproduced here.

6.3   Delta-doped n-i-p-i s

A delta-doped n-i-p-i is essentially one in which the dopant  layers are each only one

atom wide. The resulting band-edge diagram is shown in Fig. 6.9, for n and p layers

with equal numbers of ionized impurities. In this case, the conduction band edge is

given by

2
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1
, ,....and repeating

2 2r

e D
V z z d

 
  (6.15)

where D is the number of ionized donors (or acceptors) per unit are, and the superlattice

amplitude  is given by
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(6.16)

The  WKB  approximation can  be used  here,  too,  to  obtain  predictions  for  the

properties  of  this  superlattice,  in  the  way  already  described;  in  particular the

miniband  parameters  0 and  0 are obtained  in an analogous  manner.

6.4   Compositional  and  Doping Superlattices

For electronic devices, one of the most important semiconductor parameters is the value

of the energy gap between the valence band maximum and the conduction band

minimum.  Many  applications, particularly   those  that  depend  on  optical properties,

depend  crucially  on  the  value  of the  fundamental gap. One would like a wide range

of effective band  gaps, Eg,eff , for device use. The fundamental gap Eg is indeed modified

in compositional quantum wells and superlattices, as is shown in Fig. 6.10. Once such a

system is grown, its effective gap will be greater than Eg , and will moreover  be fixed.

Figure  6.9 Conduction and  valence band  edges for a n-i-p-i superlattice  with equally- spaced n
and p delta layers of equal strength.
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To obtain effective band gaps smaller than Eg , one must turn to something like a n-i-p-i

system. Fig. 6.11 shows how different effective band gaps can be obtained using the

same host material,  with the same periodicity,  but with different doping densities. From

equation  (6.16), the superlattice  modulation is proportional to the product Dd . A small

value of D results in a weak modulation of the band edge (Fig. 3.35(a)), and gives an

effective gap not much smaller than that for the bulk semiconductor.  The  effective

gap  decreases,  however,  as  doping   strength D increases  (b); and  at  high  doping,

as in (c), a semi-metal  can result.  The  same principles hold for other  doping

superlattices.

Figure  6.11 shows the case of a doping  superlattice  in which there is complete

compensation: the numbers of donors and acceptors are equal. Since the system is

assumed to be in its ground state, all donated electrons reside on acceptors.  Once such a

system is grown, however, there is also freedom to tune it. Figure 6.12 shows such a

Figure  6.10 Mo dification of the fundamental gap in an AlGaAs-GaAs quantum well.
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many-subband doping superlattice  in its ground  state, with no free carriers.

Electrons and holes are confined to separate regions of the superlattice (this is

sometimes said to be a system with an “indirect gap in real space”). One can now excite

this system, for instance with light of the right frequency, to create electron-hole pairs.

Free carriers have now been introduced into the system. Electrons will be attracted to the

quantum wells in the n-layers, and holes to the p-layers. Since these regions are well

separated in space, however, the electron and hole wavefunctions will be well separated.

This  small  overlap  means  that electron—hole recombination will be very slow. Thus

there will be an appreciable time during which these free carriers will reside in their

respective wells, where they will screen the space charge already present.  The net effect

will be to reduce the superlattice  modulation, and thus increase the effective band  gap

(Fig. 6.13).

Figure 6. 11 Delta doping superlattices  with (a) weak, (b) moderate,  and (c) strong dop- ing
densities.
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6.5 Other  Types ofSuperlattices

Compositional superlattices  of  the  GaAs/AlGaAs type,  with  low Al composi- tions,

are  called Type I superlattices. Materials such as the  InAs-GaSb  system offer  a

Figure 6. 12 A doping superlattice  in its ground  state.

Figure 6. 13 A doping superlattice  in its excited state.
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different  possibility:  the  Type  II  superlattice.  In  Type  II  superlattices, electrons are

confined to one material  and holes to the other  (Fig. 6.14).

Strained-layer  superlattices  are  compositional superlattices  in which  the constituent

materials are not perfectly lattice-matched to each other. If the materials are not too

different, and if the layers of each material are not too thick, good growth of one

material on another, in layers, is still possible. A given layer will then be compressed,

or  extended,  in  the  plane  perpendicular to  the  growth  direction,  by atomic  forces

arising from the layer onto  which it is trying to grow. The effects of strain can also be

useful. It breaks the degeneracy of hole states, and changes the band structure in other

ways, all of which offer new possibilities for device development.

Any way of imposing an artificial periodicity on a semiconductor system can in

principle make a superlattice.  The periodicity does not need to be imposed on the

growth direction of a low-dimensional system.  One superlattice of interest, for instance,

is made by shining a laser interference  pattern  onto  an already-created 2DEG.  Extra

electrons are generated (for instance in the surrounding medium) by the light, in a

periodic way, thus creating a periodic electric field which modulates the 2DEG in its

own plane. A similar way of modulating an existing 2DEG is with the help of acoustic

waves. Here, the modulation is caused by the periodic electric field which is generated

by the piezoelectric effect.

Figure 6. 14 Schematic band-edge  diagram  for a Type II superlattice.



128

Still another kind of superlattice can be created using a regular array of closely spaced

quantum dots.  In this case, an artificial periodicity will be created in at least two

different directions.
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Chapter 7 Phonons

One of the central themes of this book is how reducing the size of semiconductor structures

down to mesoscopic and smaller scales brings the quantum wave nature of electrons  into  play,

resulting  in electronic  and  optical  properties  which  are markedly  different  from  those  of

bulk  semiconductors. One of the key challenges facing physicists and engineers is how to make

devices operate at room temperature. The main obstacle to achieving this goal is the unavoidable

presence of phonons, the quantum vibrations of atoms making up a solid, and their ability to

scatter electrons.

Phonons would thus appear to occupy an uncomfortable position in the study of low-dimensional

structures, with an understanding of their properties required solely for the purpose of finding

ways to reduce their interaction with electrons. As we shall see in this chapter, however,  the

physics of phonons  in low-dimensional structures  is sufficiently fundamental and non-trivial  to

be of interest in its own right. Just as for electrons, phonons can be confined within

heterostructures and we would like to know how the dynamics of low-dimensional phonons

differs from that of bulk phonons.   We would also like to understand the effects of

dimensionality on the electron-phonon interaction and hence such electron transport  properties

as the phonon-scattering-limited mobility.

In fact, finding ways to reduce the electron-phonon interaction  is not the only reason  for

investigating  phonons  in low-dimensional  structures.  Being the vibrations of atoms  making

up a structure  and given their interaction with electrons, phonons  have  proved  to  be an

effective probe  of the  electronic  and  structural properties  of low-dimensional

semiconductors. Two such probe techniques are acoustic phonon pulse spectroscopy and Raman

spectroscopy. Phonon pulse spectroscopy  relies on  the  fact  that  acoustic  phonons  with

wavelengths  on  the order  of several hundred  angstroms  can  travel  for  relatively  large

distances  in semiconductor crystals without  scattering.  By detecting the flux of acoustic

phonons   emitted   from   an   electron   gas   heated   above   the   lattice   temperature or,

alternatively,  measuring the response (e.g. conductance) of an electron gas due to the interaction

with an incident beam of acoustic phonons, information about  the electron gas can be obtained.
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For example, phonon  pulse spectroscopy can be used to study the electron current distribution of

a two-dimensional electron gas and  more  complicated  electron  states. Acoustic pulse methods

have also been used to study the materials properties of semiconductors, such as surface and

interface roughness. Raman   spectroscopy  has  proven  to  be  an  extremely  powerful  probe

of  the dynamics   of  phonons   in  heterostructures. This method takes advantage of the fact that

energy conservation requires a photon  which absorbs or emits a phonon  to suffer a change in its

frequency. This frequency change is called the Raman shift. By measuring the intensity versus

Raman shift of laser light which is inelastically scattered from a solid, the energies and, hence,

the frequencies of the allowed phonon modes of the solid can be measured.   Since  the  phonon

frequencies  are  determined   by  the interatomic  forces and  atom  masses that  comprise  a

material,  Raman  spectroscopy can be used to infer various  materials  properties  of

heterostructures.

However, before going on to study the various phonon  spectroscopies and their interpretation in

terms of heterostructure properties,  we should  first learn about the  basic  physics of phonons

and  electron-phonon interactions in heterostructures. This is the purpose  of the present  chapter.

7.1 Phonons in Heterostructures

In the classical approximation, the vibrations  of the atoms making up a crystalline solid  are

most  conveniently  described  by the  function  ,ju R t
 

which  gives the displacement  from

the  equilibrium  position  at  time  instant t of  the j-th  basis atom   in  the  unit  cell  located

at 1 2 31 2 3R n a n a n a  
   

. The displacement is specified by its magnitude and direction and

thus is a vector.  The displacement of a given atom  as a function  of time will be governed by its

interaction with all the other atoms making up the solid. Because of the non-linear nature of the

full equations of motion and the very large number of atoms involved, it is in practice impossible

to find solutions for the atom displacements without first making some simplifying

approximations. The most common approximation is to expand the interaction potential energy

in the displacements and keep only terms to quadratic order.  (Note that linear order terms vanish

since the displacements are defined with respect to the equilibrium positions of the atoms.)  The
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equations  of motion are then  linear  in the displacements  and  we have the important result  that

any solution  can be expressed as a sum of solutions  with the property  that  all atoms vibrate  at

the same frequency:

   , Re i t
j ju R t c e u R




    


   
(7.1)

Because of the latter  property, this is called the harmonic approximation.

Thus, to understand the classical dynamics of atomic vibrations in a crystalline solid, it is

sufficient to find the single frequency solutions  i t
je u R


 
, the so-called normal modes. The

quantum dynamics and interpretation in terms of vibration quanta — phonons — then follow

directly. For example, the total energy of a crystal in a given quantum state is

1

2
E N 



    
 

 (7.2)

where N is the number  of phonons  present  of mode-type  .

This picture of the dynamics, involving the concepts of classical normal modes and quantum

phonons, is valid provided the higher order non-quadratic terms in the potential energy

expansion - the anharmonic terms - are much smaller than the quadratic terms. Physically, this

means that changes in the distances between neighbouring atoms due to their vibrations are small

compared with their equilibrium separations. This is the case as long as we are well below

melting temperatures, as we indeed are for the low-dimensional  structure  physics and

applications discussed in this book. However, that the presence of even small anharmonic terms

will mean that these phonon modes have only a finite lifetime.

7.2 Superlattices

To gain some idea of the nature of phonon  modes occurring  in heterostructures, we shall focus

our discussion on the modes of a special type of heterostructure - the superlattice.
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As an illustrative example, we consider a superlattice formed  from alternating GaAs  and  AlAs

slabs. Both  GaAs  and  AlAs crystals  have zincblende  structure  and thus a superlattice  grown

on an (001) face of a GaAs  crystal  substrate  will comprise alternating layers of atoms  of a

single species with a monolayer  spacing equal to half the lattice constant. The lattice constant of

GaAs is 5.65 A, while that of AlAs is 5.62 A, so that the respective monolayer  spacings are 2.83

A and 2.81 A.

One class of modes which occurs in such a superlattice involves the vibration  of entire (001)

planes  of atoms  in the direction  normal  to the planes,  i.e. the [001] direction. These are called

longitudinal modes. Because the atoms in a given monolayer are all moving in unison, we can

model the superlattice by using a one-dimensional system. Further simplifications follow if we

make the harmonic approximation and include only nearest-neighbour interactions  between

atoms.

.

The resulting dynamics is identical to that of a mechanical system consisting of a chain of

masses connected with springs (Fig. 7.1). As we shall now see, this linear chain model gives a

reasonably good description of the [001] longitudinal modes.

Figure 7.1.    Linear chain model for [001] longitudinal  modes in a GaAs/AlAs  superlattice. The
atoms  are shown in their equilibrium  positions.
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In the GaAs  or AlAs slabs, the equations  of motion  take the form

        
2

1
1 1 2 22

, 2 , , 1
d u

m na t u na t u na t u n at
dt

       (7.3)

        
2

2
2 2 1 12

, 2 , , 1
d u

m na t u na t u na t u n at
dt

       (7.4)

where a is the monolayer  spacing (i.e. the unit cell length),  is the force constant and

 ,ju na t denotes the displacement from equilibrium along the line of the chain at time t of one

of the two atoms of mass m1 and m2 in the unit cell located at na. To obtain  solutions for the

entire chain, these equations  must be supplemented  by certain  conditions  on  the

displacements  at  the  boundaries between  GaAs  and AlAs slabs. However, before we consider

these full solutions, let us first address the   simpler   problem of a single slab with   periodic

boundary conditions. Substituting the  trial  mode  solution    , exp ,j ju na t A i t qna    

2q   , into  equations  (7.3) and  (7.4), we find that  we can  have  a non-trivial  solution

(i.e. 0jA  ) only if the determinant of the coefficients of the two unknowns A1 and A2 vanishes.

This results in the following relation between the angular frequency  and wavevector q:

  1 22 2 2
1 2 1 2 1 2

1 2

2 cosm m m m m m qa
m m


        (7.5)

The mode angular  frequency  dependence  on wavevector  is called the dispersion relation  and

the  two  roots  in (6.5) are  the  branches of the  dispersion  relation. Before  we can  display  the

dispersion  relations  for  GaAs  and  AlAs,  we must determine  their force constants. This can

be done, for example, by measuring  at q = 0 using Raman spectroscopy and then fitting the

positive root  at q = 0 in (7.5) to the measured  value of  . For  GaAs,  this gives the value  =

90.7 N/m, while for AlAs we obtain  = 95.4 N/m.  In Fig. 7.2 we show the resulting  dispersion

curves for  GaAs  and  AlAs. In  fact,  they  are  a  set  of  discrete  points  at 2q n Na  ,

for n = 0, 1, 2, ... , where N is the number  of monolayers.  Altogether  there  are  2N distinct

modes, N for each branch.  Following  the usual convention,  the angular frequency  has  been

divided  by the  factor 2 c , where c is the  speed of light  in vacuum  (3 x 1010 cm s-1 ). This

has  the  advantage   that  the  Raman  shift  wave-number  corresponding to  a given phonon
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mode  can  be inferred  directly  from the plot in Fig. 7.2. To convert to electron-Volts  (1eV =

1.6 x 10-19 J), the wave-number value is multiplied by the factor 1.24 x 10-4 eV cm. For a mode

in a GaAs or AlAs positive root branch, we see that the Raman shift will be in the infra-red

range. For this reason, the positive root branch is called the optical branch. The negative root

branch extends down to zero frequency as q goes to zero and thus is called the acoustic branch.

If we expand  the dispersion  relation  (7.5) with respect to q and keep only the lowest-order

non-vanishing terms, we find for the optical  branch:

  1 2

1 2

1 2

2 m m

m m




 
  
 

(7.6)

and for the acoustic branch:

Figure 7.2 Longitudinal [001] acoustic (LA) and optical (LO) phonon  dispersion  curves for
GaAs  (solid line) and AlAs (dashed  line).
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 

1 2

1 22
qa

m m




 
   

(7.7)

Thus,  as q approaches zero,  the  optical  group velocity gv d dq vanishes, while  the

acoustic  group  velocity  becomes  constant   and  non-zero,   coinciding with  the  acoustic

phase velocity s q .  To  determine  how  the  atoms  move for small q, we require the

remaining  part  of the solution  to equations  of motion (4.3) and (4.4), namely the relation

between the constants A1 and A2:

 
2 1 2

2

1

2

iqae
A A

m



 


 


(7.8)

Substituting expression (7.6) for  into (7.8), we find that for q tending to zero, the optical

modes  approach a standing  wave with  the  Ga  and  As (or  Al and  As) atoms vibrating  180o

out of phase: A2/A1 = - m1/m2. For the acoustic modes all the atoms vibrate in phase.

Substituting the force constant values given above into (7.7), we have a prediction for the small-

q group velocity of longitudinal acoustic (LA) phonons propagating in the [001] direction.   For

example,  for  GaAs   we  obtain   the  value 4040 m s-1, whereas the actual value is about  4770

m s-1 and therefore the linear chain  model  prediction  is out  by about  15%. This is quite

reasonable given the simplicity of the model. A more accurate linear chain model will take into

account interactions   between   next-nearest neighbor atoms   as  well,  with   the   new

unknown  force constants  determined  by fitting to additional measured  frequencies. The

existence of a non-negligible acoustic group velocity gives rise in heterostructures  to  a range of

acoustic  phonon  transport phenomena and,  as mentioned, makes possible the field of acoustic

phonon pulse spectroscopy.

Our discussion so far has been about the longitudinal [001] modes of a single GaAs or AlAs slab.

Let us now consider the longitudinal [001] modes of the full GaAs/AlAs  superlattice  structure.

An initial, basic understanding of the superlattice  modes  can be gained  just by comparing  the

single-slab GaAs  and  AlAs dispersion  relations  (Fig. 7.2). The acoustic branches of AlAs and

GaAs overlap in frequency and therefore the acoustic modes will extend throughout the entire

superlattice.  On  the  other  hand,  the  AlAs  and  GaAs  optical  branches  do  not overlap  in

frequency - a  consequence  of  the  large  difference between  the  Ga and  Al atom  masses -
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and  hence we expect the superlattice  optical  modes  will be confined either to the AlAs or

GaAs slabs. An estimate of the extent to which an optical mode is confined to a given slab can be

obtained by considering the imaginary wavevector solutions to the single-slab equations of

motion (7.3) and (7.4). We find that optical modes confined to the GaAs slabs extend between

about  1 to about 0.3 to 0.4 monolayers into the GaAs slabs, where the lower and upper limits are

for zone centre  (q=0) and  zone boundary (q = ±/a)  modes,  respectively. Thus the superlattice

optical modes are well-confined.

The superlattice  dispersion  relation  and mode solutions  are determined  by first constructing

solutions  in a single superlattice  unit cell (which comprises an AlAs and GaAs slab) and then

using Bloch’s theorem  to extend the solutions  throughout  the whole superlattice.  In Fig. 7.3,

Figure 4.3.    Dispersion  curve for [001] longitudinal  phonons  of a superlattice comprising
alternating 4-monolayer  slabs of GaAs  and  3-monolayer  slabs of AlAs. Also shown  for
comparison  are the dispersion  curves for bulk GaAs  and AlAs (dashed  lines).
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we show the longitudinal [001] dispersion relation for a superlattice  with 4-monolayer  GaAs

slabs and 3-monolayer  AlAs slabs — a (4, 3) superlattice.  Also shown for comparison are the

single-slab dispersion relations.  A single slab with periodic boundary conditions has period a,

the monolayer spacing, while an (M, N) superlattice has a larger period d = (M + N ) a (where we

regard the AlAs and GaAs monolayer spacings to be the same). Thus, the superlattice  Brillouin

zone (boundaries at q = ± /d ) is smaller than the slab Brillouin zone (boundaries at q = ± /a).

Notice that the part of the dispersion curve below about 200 cm-1 can be approximately obtained

by “folding” the bulk acoustic phonon  branches  into the smaller superlattice zone. For this

reason, this part of the dispersion curve is called the folded acoustic phonon branch. A Raman

spectrum of a superlattice  is shown  in Fig. 7.4, which gives clear evidence of folded LA

phonons  in the form of double peaks occurring  at the predicted  frequencies.

.

Several other types of mode can occur in the GaAs/AlAs   superlattice.  For example, the (001)

planes of atoms can also freely vibrate in the [110] direction, transverse to the direction of

Figure  7.4.    Raman  spectrum  of a superlattice  comprising  alternating 42 A GaAs  slabs and 8
A Al0.3 Ga0.7 As slabs . The inset shows a model calculation of the folded acoustic branch  as
well as the location  of the observed peaks.
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propagation. Another type of mode which can arise are the interface modes which are confined

to the regions of the interfaces between the GaAs and AlAs slabs. These various mode-types will

also occur in GaAs/AlAs  superlattices  grown on other  GaAs substrate  faces and also in

superlattices  made from other  alloy materials.

Although  heterostructures such as quantum wells, wires and dots lack the layer periodicity  of

the  superlattice,  the  basic  features  of the  phonon  modes  are  the same.  For  example,  in  a

quantum well formed  by  sandwiching  a  GaAs  slab between two AlAs slabs, the optical

modes will be confined either to the GaAs or AlAs slabs, while the majority of the acoustic

modes will extend throughout the whole structure.  Interface modes will also occur.
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Chapter 8. Optical Properties

Recent  progess in epitaxial  growth techniques  has promoted the use of semiconductor

heterostructures in optoelectronic devices. The physics of these materials relies upon the

similarity between the electronic band structures of the different semiconductors. If the bulk

band structures are sufficiently similar then changes in composition can be represented primarily

as changes in the band splitting and other bulk parameters. In a direct band-gap  semiconductor

(where minimum of conduction band coincides to maximum of valence band in k-space (Figire

8.1) ) an abrupt change in composition   from  wide  to  narrow  band  gap  results  in  a

discontinuity   in  the conduction and valence band profiles in the growth direction.

Figure 8.1 (a) direct bamd-gap semiconductor;  (b) indirect band –gap semiconductor.  In direct
band-gap semiconductor E(k) dispersion relation for conduction band has the minimum at the
same value of k, where valence band dispersion relation has the maximum.  In indirect band-
gap semiconductor optical transition between the conduction and valence band is much less
probable because it is simultaneous conservation of energy and momentum is impossible if only
electron and photon participate in transition process
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The heterointerface so formed is Type I or Type II, depending on the band-gap  alignments,

determined by the conduction  band  offset (Fig. 8.2).

A quantum well (QW) is made by growing a thin layer - typically a few nanometres (nm) or 10s

of nm - of narrower  gap material  within  a wider-gap  semiconductor, where the inserted layer

is thin enough to cause quantum confinement of the carriers. QWs are similarly classified as

Type I or II in direct-gap  materials (Fig. 8.3).

Figure  8.2   Type I and Type II heterointerfaces.

Figure 8.3 Type I and Type II quantum wells.
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In indirect gap materials (where minimum of conduction band does not coincide to maximum of

valence band in k-space) we need to consider the band-edge discontinuities  at different points in

the band structure.  The AlAs/GaAs  heterointerface, for example, is Type I at the    point but

Type II at the X point (Fig. 8.4). The overall band structure  of an  AlAs/GaAs  QW  system thus

depends  on  the  relative  well and barrier  widths.

In a multi-quantum well (MQW) system a series of QWs is separated  by layers of  wider-gap

(barrier)   material   thick  enough  to  isolate  carriers  in  the  wells (Fig. 8.5). A regular MQW

with a barrier  thin enough  to allow carrier  communication  between the wells is known  as a

superlattice  (SL).

The choice of materials  for heterostructures is influenced by lattice spacings as well as  by  the

symmetry  of  the  crystal  band  structures and  differences in the effective band  gaps  (Fig.

Figure 8.4Conduction and valence band profiles in AlAs/GaAs  at the    point and the X

points.
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8.6). Strain  forces  at  the  interface  between  materials of very different  lattice  constant  may

produce  imperfections  which degrade  the material and interface quality. However, in a small-

period  SL the thin layers may accommodate  the  alternating  strain  forces  to  produce  useful

heterostructures where  the  potential   wells  in  different  crystal  bands   are  distorted   by

strain (Fig. 8.7).

Figure 8.5 Multi-quantum well band  profiles.

Figure 8.6 Room  temperature band  gap Eg versus lattice constant  for the main binary III—
V semiconductors. Tertiary alloys are represented by the lines joining relevant binaries.
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Figure 8.7 Dispersion  relationships in bulk 1nGaAs  and in strained
GaAs/1nGaAs.
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8.1 Optical Absorption

The absolute magnitude of the absorption for a single QW is low: approximately 1% of the light

is absorbed  on the step above the first light-hole and first heavy- hole transitions. This means

that  direct absorption measurements  are difficult to perform  except for systems with many

QWs. Alternative  methods  of probing  the absorption spectrum  are  photocurrent (PC)  and

photoluminescence  excitation (PLE) spectroscopy.

In a photoconductivity measurement the QW sample must be contacted (typically as a p-i-n

device) so that a bias may be applied. The QW is then illuminated with monochromatic light of

frequency  and a small bias is applied  to remove carriers photogenerated in the QW (Fig. 8.8).

The photocurrent collected at the contacts, when measured as a function of , reflects the QW

absorption, but only to within a factor representing the quantum efficiency for escape from the

well. At low temperatures, or  in deep  wells, this  factor  may  vary  significantly  with  the

excitation  energy  and  produce  an  unreliable  picture  of the  relative  absorption strength,

though  not  of  the  positions  of  features.  Another   difficulty with this technique, particularly

when dealing with wide wells, arises from the Stark  shift- ing of the subband  edges by the

applied bias.

Figure 8.8 Measurement of photoconductivity.
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Photoluminescence excitation spectroscopy may be used to study uncontested samples. In a PLE

measurement, the QW is illuminated by light of frequency  and a detector  is fixed at an

energy just below the effective absorption edge (the first electron-heavy-hole exciton).  As the

energy of the incident light is varied, electrons are promoted from the valence band to the

conduction band according to the absorption strength.  Carriers  first thermalize  rapidly  to

their  respective band  edges and  then  recombine  slowly by  radiative  recombination across

the band  gap (Fig. 8.9). The PL signal will thus  vary with w in harmony  with the strength of

the absorption (Fig. 8.7). PLE will be more reliable for states close to the absorption edge,

where  carriers  are  less  vulnerable  to  removal  by  other mechanisms.

Figure 8.9.    Photogeneration and recombination of carriers in a quantum well in
photo- luminescence excitation.
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8.2 Features of Optical  Spectra

The peculiarities of optical spectrum of nanostructures will be discussed at the example of

colloidal quantum dots. Colloidal II -VI semiconductor nanocrystals or quantum dots (QDs) have

at aimed a great research focus due to their advantages in optical properties including tunable

Figure 8.10 Photoluminescence excitation  spectrum   of  an  8.4 nm AlO.33 GaO.67 As/GaAs
multi-quantum well at 11 K.  As well as the  main  transitions between  subbands  of  the same
order (el—hhl, el—lhl and e2—hh2) the exciton for the optically weak el—hh3 transition can be
seen at l.65 eV.
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emission spectra, high photostability, resistance to photobleaching and control able surface

characteristics. CdSe Qds find a wide range of applications in optoelectronic devices, photo

catalysis, solar energy conversion and biological imaging and labeling. The main property of

CdSe QDs is optical property. The nanoparticles are a bridge between bulk materials and atomic

or molecular structures. A bulk material should have constant physical properties regardless of

its size, but at the nano-scale this is not the case. The properties of materials change as their size

ap roaches the nanoscale and the percentage of atoms at the surface of a material becomes

significant. The size of the nanoparticles is finte, so the continuous energy band of the bulk

crystal transforms into a series of discrete states. The nanoparticles frequently display

photoluminescence and sometimes display electroluminescence. It is well known that the

quantum confinement effect modifies the electronic structure of nanocrystals when their

diameter is comparable to or smaller than the diameter of the bulk exciton.

As mentiond, quantum dots are nanoparticles of semiconductors materials ranging from 2 to

10nm in diameter, like CdSe and ZnS. There electronic characteristics are closely related to

the size and shape of the individual crystal. If the size of crystal is small , then band gap

between the higher valence band and the lowest conduction band becomes high and more energy

is require for exciting the dot and consequently, more energy is released when the crystal returns

to its resting state. A principal advantage with quantum dots is that by controlling the size of

crystals, the conductive properties of the material is controlled. Because of their small size,

quantum dots displays unique optical and electrical properties. The most immediately apparent

of these is the emission of photons under excitation, which are visible to human eyes as light.

The wavelength of these photon emissions depends not on the material from which the quantum

dot is made, but its size. The ability to control the size of quantum dot enables the manufacturer

to determine the wavelength of emission, which in turn determines the color of light the human

eye perceives. The smaller the dot, closer it is to the blue end of the spectrum and the larger the

dot, closer to the red end as shown in Fig 8.11. When the size of the quantum dot is smaller than

the critical characteristic length called the exciton. In Bohr radius, the electrons crowding lead to

the spliting of the original energy levels into smaller ones with smaller gaps between each

successive level. The quantum dots that have radii larger than the exciton Bohr radius are said to

be in the “weak confinement regime” and the ones that have radii smaller than the exciton Bohr

radius are said to be in the “strong confinement regime”.
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The fluorescence of the quantum dots is a generated when valence electron excite with a certain

energy and they emits energy in the form of photons as the excited electron returns to the ground

state, combining with the hole. The energy of the emitted photon is determined by the size of the

quantum dot due to quantum confinement effects. The energy of the emitted photon is sum of the

band gap energy between occupied level and unoccupied energy level, the confinement energies

of the hole and the excited electron, and the bound energy of the exciton as shown in Fig 8.12.

Figure 8.11  Different size quantum dots emitting light at different frequencies.

Figure 8.12 bang gap diagram
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The electronic state is an important property and can be described in terms of valence and

conductivity bands and a gap between these bands. However, as the particles become smaller,

the wavelength of the electrons is closer to the range of the particle sizes and the laws of classical

physics have to be substituted by quantum confinement or quantum size effect. The UV-visible

spectrum showed that the absorption peak of obtained CdSe QDs in aqueous solution is 543 nm

(2.28 eV), relative blue-shift to the band gap of bulk cubic CdSe (1.78 eV, 698 nm).

The quantum dots of the same material, but with different sizes, can emit light of different

colors. The physical reason is the quantum confinement effect. The larger dot gives low energy

fluorescence spectrum. Conversely, smaller dots emit bluer light (Fig.8.14). The coloration is

directly related to the energy levels of the quantum dot. The band gap energy that determines the

energy of the fluorescent light is inversely proportional to the size of the quantum dot. Larger

quantum dots have more energy levels which are also more closely spaced. This allows the

quantum dot to absorb photons containing less energy, i.e., those closer to the red end of the

spectrum. The lifetime of fluorescence is determined by the size of the quantum dot. Larger dots

have more closely spaced energy levels in which the electron-hole pair can be trapped.

Therefore, electron-hole pairs in larger dots live longer causing larger dots to show a longer

lifetime.

Figure 8.13 UV-Visible absorption spectra of CdSe QDs.



150

8.3     Quantum-well Solar Cells

Quantum-well  structures  are important in optoelectronics because they offer the joint benefits

of highly confined electron and hole populations and a tunable band gap.  One rather  less

obvious  application is to  high efficiency photovoltaics: the  quantum-well   solar  cell (QWSC).

A simple, single band gap photoconverter works by absorbing  incident photons  of energy

greater  than  the  band  gap  and  separating  the  charges  so  produced  to deliver an  electric

current  to  an  external  circuit. In a semiconductor solar cell the charges are separated by the

built-in electric field of a p-n (or p-i-n) junction. Not  all the  light energy absorbed  can  be

converted  into  electrical  energy since photogenerated carriers  quickly  decay  to  their  ground

state,  losing any  excess energy as heat.  A photon  of energy  absorbed  in a semiconductor

of band gap Eg can  thus  deliver no  more  than Eg of electrical  potential  energy to  the

external  circuit. Increasing the band gap increases the potential - and hence the cell voltage; but

decreases the photocurrent since only high energy photons  can be absorbed.  Therefore,  for any

broad  band  incident spectrum,  optimum  power conversion  is achieved at some intermediate

band  gap Eopt.

Figure 8.14 Fluorescence spectra of CdSe quantum dots of various sizes.
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These  considerations place a limit on  the  efficiency available  from  a perfect single threshhold

photoconverter. In the standard air mass l.5 solar spectrum  a limit of 3l% is reached at a band

gap of l.35 eV. In principle, such limits may be surpassed  in a multi-band-gap or tandem

system, where different parts  of the spectrum  are preferentially  absorbed  in materials  of

different band gap.  Independent  optimization  of  band  gaps  and  photocurrents increases  the

theoretical efficiency to  about  45%  for  the  standard solar  spectrum  or  50% under  a

concentration of  l000 . Practical improvements fall  far short  of these limits, usually through

electrical losses.

Quantum well structures are interesting for photoconversion firstly as an alternative multi-band-

gap approach to the tandem cell. Quantum wells added  to the space  charge  region  of  a  single

band  gap  p-i-n solar  cell extend  its  spectral response  to longer wavelengths  and so increase

photocurrent (Fig. 8.15). At the same time the QWs act  as centers for enhanced  recombination

and  reduce  the cell’s operating   voltage.  If  the  improvement   in  current  outweighs  the  loss

in voltage,  a net  increase  in power  conversion  efficiency is achieved.

Figure 8.15 .    Calculated  spectral  response  of an AlO.33 GaO.67 As p-i-n solar  cell with and without
GaAs quantum wells in the O.8 m intrinsic region. Quantum wells extend the spectral response to
longer wavelengths where the solar spectral irradiance  is still high. (AM air mass)
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An  increase in the limiting efficiency of a monolithic solar cell requires that such enhancements

be available even using a host cell of optimum  band gap. This situation essentially requires that

the quasi-thermal equilibrium  between the QW and host material  is broken,  so that

recombination proceeds more slowly than  expected.

Less radically, QW structures are interesting in the possibility of superior practical  performance

to  the  homogenous   cell of  equivalent  band  gap.  By careful choice of materials for well and

barrier  it may  be possible  to  design a QWSC where the net recombination current  is smaller

than  in the equivalent  bulk alloy. This has been experimentally confirmed  in InP/InO.52 GaO.48

As QW structures.

QWSC behaviour  depends  upon the QW electronic  structure  in several ways. The  joint

density  of  states  function  determines  the  QW  absorption spectrum which, in turn,

determines  the photocurrent enhancement. Density of electron  states  in the  conduction band

and  hole  states  in the  valence  band determine the spatial distribution of electrons and holes

and, hence, the recombination  current.  Finally, the mixing of states between QW and host

material or between neighboring QWs can affect the efficiency of carrier transport.

8.4     Quantum-dot Solar Cells

As mentioned above, a solar cell is a device that converts photons from light into electricity.

Fundamentally, the device needs to fulfill two functions: photogeneration of charge carriers

(electrons and holes) in a light-absorbing material, and separation of the charge carriers to a

conductive contact that will transmit the electricity.

Due to the nature of photovoltaics, the light-absorbing material will only absorb certain energy

level from photon.    For example, Silicon has a band gap of 1.14 eV, which means 1.14 eV can

excite the electron into conduction band. If photon has energy more than 1.14 eV, excess energy

will generate heat instead of generating more electron-hole pairs (Fig.8.16). This phenomenon

limits the overall efficiency of the conventional semiconductor photovoltaic device.
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One of the potential approaches to overcome this limit is carrier multiplication (CM), or multiple

excition generation (MEG). The idea is illustrated in figure 8.17. In a traditional photon

excitation in figure 8.17 a), one phonon can generate only one pair of exciton. The excess photon

energy gE  is dissipated as heat via phonon emission and therefore is wasted. In this case,

the quantum efficiency (QE) of photon-to exciton conversion is zero below gE , the energy gap,

and is 100% above it. This corresponds to the Shockley Queisser limitation of the maxima

quantum efficiency mentioned earlier. In figure 8.17 b), the number of excitons produced by a

single photon is only limited by energy conservation. Photons with energies gE , 2 gE , and 3 gE

produce one, two, and three excitons, respectively. The QE is increased by 100% if photon

energy is increased by gE .

The  MEG  phenomenon  has  been  known  in bulk  semiconductors  since  the  1950s.

However, since the restrictions imposed by energy and momentum conservation, the power

conversion efficiency improvement due to MEG was less than 1%. Recently, it was discovered

that while being low efficiency in bulk semiconductors, MEG can become extremely efficient in

ultrasmall semiconductor nanocrystals. This lead to the quantum dots (QDs) solar cells.

In  semiconductor  nanocrystals i.e.  quantum  dots,  discrete  quantized  energy  levels  are

formed  that  affect  the  relaxation  dynamics  of  hot  electrons  and  carriers,  and  allow  other

relaxation channels to compete with phonon emissions. As Schrödinger equation explains, the

Figure 8.16 Thermalization losses in solar cells
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states are quantized according to angular momentum in quantum dot, and translation momentum

conservation is replaced with angular momentum conservation, which is less restrictive.

As mentioned at limitation of bulk semiconductor solar cell, high-energy electrons (hot electron-

hole pair created by absorption of photons larger than band gap) convert their excess energy to

heat through phonon emission. Normally the time scale of this relaxation in bulk semiconductor

is in the order of sub picosecond scale. However, in quantum dot the generated electron-hole

pairs become bound to each other due to strong quantum confinement. And the formation of

discrete quantized energy level slows recombination time scale. So the slowed cooling of

energetic excitons are able to enhance the photon conversion efficiency by allowing free energy

to be extracted from the high energy excitons before they relax to their lowest state and produce

heat.

Figure 8.17 a) Traditional schematic of solar cell; b) Multiple excitons are generated with one
absorption of a single photon
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Limitation   of   solar   cell   is   also   related   with   recombination   of   electron-hole   pair.

Recombination is part of a process to restore equilibrium to a semiconductor that has been

perturbed, or disturbed out of equilibrium. Perturbations can be in the form of an applied electric

field, a change in temperature or exposure to light. Recombination occurs when there is an

excess  of  carriers  and  they  are  destroyed,  by  recombining.  When  electron-hole  pairs  are

destroyed, a negatively charged electron is attracted to a positively charged hole, and as they get

together, their charges are canceled and the electron is part of a bond once again. Auger

recombination is a type of band-to-band recombination that occurs when two carriers collide

(Fig.8.18). The collision transfers the energy released from the recombining carrier to the

surviving carrier. In other words, one carrier loses energy and the other gains it. The one that

loses it is recombined, and the one that gains it goes to a higher energy level. Eventually, this

highly energized carrier "thermalizes" - loses energy in small steps through heat producing

collisions with the semiconductor lattice, until it eventually recombines or gains energy once

more. And larger hole effective mass leads to rapid thermalization.

One of the approaches to overcome those limitations (thermalization and Auger recombination)

is MEG or CM. CM is very efficient in quantum-confined semiconductor nanocrystals, whereas

it is inefficient in bulk semiconductors (the maximum CM-induced increase in the efficiencies of

traditional solar cells is less than 1%). By analyzing dynamical signatures of excitons and multi-

excitons in PbSe quantum dot, it is discovered that the absorption of a single photon can produce

Figure 8.18 Auger recombination in quantum dots
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two or even three electron–hole pairs (excitons), which results in internal quantum efficiencies

greater than 200% for conversion of light quanta into charge carriers. The schematic of

generation/relaxation kinetics in a quantum dot is described in Figure 8.19. At time t1, a photon

with energy greater than the CM threshold results in the generation of is absorbed ‘hot’ bi-

exciton(at t2) on the time scale of τCM. After relaxing to its ground state (at t3) with the sub-

picosecond time constant τr, this bi-exciton recombines on the sub-nanosecond time scale

(timeconstant τA) by the non-radiative Auger process to produce a single exciton (at t4). Finally,

the exciton recombines radiatively on a much slower timescale of tens to hundreds of

nanoseconds. A significant difference in the relaxation behavior of bi-excitons (fast decay) and

single excitons (slow decay) is the key property of nanocrystals. Therefore considering CM and

Auger recombination kinetics, current should be extracted before Auger recombination occurs.

Figure 8.19 Evolution  of  electron –hole system when photon is absorbed
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Chapter 9 Localization and  Quantum Transport

Traditional solid-state physics is based on the concept of the perfect crystalline solid, sometimes

with a relatively low density of defects. This perfect crystallinity has played a crucial role in the

development of the subject, with Bloch’s theorem stating that wave function of electron in

crustal can be written by

   , ik r
nnk

r u r k e 
 


  

(9.1)

providing the central conceptual  base.  Concepts  that  arise  from  this  theorem, such  as

bands,  Brillouin  zones,  vertical  transitions,  effective mass  and  heavy and  light holes,  are

really only  well-defined in a perfect  infinite crystal.  In the absence of crystallinity none of

these concepts is strictly valid, though in some cases it provides a useful starting point.  In

general, however, a new approach is required to characterize  electrons and phonons  in

disordered  solids.

When we consider low-dimensional structures Bloch’s theorem may or may not be valid.  There

is nothing intrinsic to low dimensionality which invalidates it. Many of the simple examples in

quantum mechanics and solid-state  physics text-books are, in fact, one-dimensional (e.g. the

particle in a box, the Kronig—Penney model).  Indeed,  in  a  quantum well prepared   by  any  of

the  standard growth methods, much of the physics can be understood by using basics of

quantum   mechanics   and   the   effective  mass   approximation. This  is because  a region  of

adjacent  GaAs  layers  in Alx Ga1-x As can, for many  purposes,  be regarded  as a perfect

potential  well. By doping the AlGaAs,  the electrons  in the well can be spatially  separated

from the scattering due to the ionized donor  atoms. Thus, in many respects, the electrons in this

system can be treated as particles in a one-dimensional box.

The  quantum well is, however,  a very special quasi-two-dimensional  system, albeit  a  very

important one.  As  discussed, it is very  difficult to prepare  low-dimensional  samples of high

quality  for other  than  lattice-matched planar heterostructures. Thus, most heterojunctions, such

as those with a significant lattice mismatch, metal-oxide-semiconductor field-effect transistors
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(MOSFETs), narrow  quantum wells and quantum wires, etc., are in practice highly disordered

with an effective density of scatterers  which can approach the density of atoms. Clearly, in such

systems, it cannot be valid to treat the effect of scatterers with perturbation theory  using the

perfect crystalline case as a starting  point.

As we shall see later, there is one sense in which low-dimensional systems are intrinsically

different from  three-dimensional systems. The amount of scattering required to produce

dramatic  changes in the behavior can sometimes be so small that  perturbation theory  may

never be valid.

9.1 Localization, Percolation

Let us start with  a simple classical problem.  How does a fluid flow through a random medium?

This is a problem of considerable practical importance in its own right: the extraction of oil from

porous  rock strata. Consider a random landscape which is being slowly filled with water.  At

first there will be a continuous land mass with a few lakes (Fig. 9.1(a)). When the water level is

very high we have islands in a sea (Fig. 9.1(b)). Let us now suppose there is a dam at the edge of

the area which requires large quantities  of water to drive a power station.  When the water level

is low only the lake next to the dam can be used and it will soon run out.  As the level is raised

this lake becomes larger but still finite. The power station will run longer but will still eventually

drain the lake and have to stop. At a critical water level (Fig. 9.1(c)) the system changes from a

lake  district  to  an  archipelago.  This is analogous to the percolation transition, where the water

first forms a continuous network through the landscape.  After this the power station can run

indefinitely without fear of running out of water.

This phenomenon has much in common with more conventional phase transitions.  There is a

characteristic length scale which diverges at the transition: the size of the lakes or islands. There

is a well-defined critical water level, rather like the critical temperature of the freezing transition

or the ferromagnetic-to-paramagnetic transition in iron.
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Figure  9.1.    Percolation diagrams, with (a) low water level with a few lakes,
(b) high water level with a few islands, (c) intermediate (critical) water
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If we think in terms of the density of blockages rather than the water level we see that there is a

critical density above which the flow of water stops.

The one-dimensional version of this problem is special. Any blockage of the channel is enough

to prevent the flow of water. The critical density is zero. This is an example of a problem which

cannot be solved by perturbation theory. There is a discontinuous jump in the behavior between a

system with no blockages and one with a single blockage. In higher dimensions, in contrast,

water can flow around the blockage.

9.2 The Anderson Transition  and  the  Mobility Edge

The concept of the localization of electrons caused by disorder is due to Anderson.  He  argued

that   an electron  which  starts   at  a  particular  site  cannot completely diffuse away from that

site if the disorder  is greater than  some critical value. Anderson thus introduced the concept of

localized and extended states. The characteristics of these states can be summarized as follows

Figure  9.2.    Schematic  diagrams  of  (a)  extended  and  (b)  localized  states,  showing
the correlation length l, and the localization  length .
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(a)  extended (i)     spread  over the entire sample

(ii)    not normalizable

(iii)   contributes to transport

(b)  localized (i) confined to a finite region

(ii)    normalizable

(iii)   does not contribute to transport

It is worth  noting  at this point  that  the phenomenon of localization  is not  confined to

electrons, but can also be observed in other wave phenomena in random media, such as acoustic

and optical waves, as well as water waves (Fig. 9.3).

Figure 9.3 Three photographs of a water bath exposed to an audio-frequency oscillation.
(a) Shows a situation where the obstacles sit in a regular quadratic lattice (frequency  76
Hz).  We see strong   Bragg reflection corresponding to standing waves. (b) and (c) show
randomly  spaced obstacles exposed to two different audio frequencies (105 Hz and  76 Hz).
Both (b) and (c) show standing wave patterns, but localized in different areas.
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Mott later introduced the concept of a mobility edge (Fig. 9.4).  He argued  that  it  is

meaningless  to  consider  localized  and  extended  states  which are  degenerate  since  any

linear  combination  of  a  localized  and  an  extended state must be extended. Thus, the concept

of localization can only be meaningful if there are separate energy regions of localized and

extended  states,  rather  like bands  and  gaps.  These regions are separated by a mobility edge.

Mott  further argued  that  the states  close to a band  edge are more likely to be localized than

those in  the  middle  of  a  band.  Since the  localized  states  do  not  take  part  in conduction,

electrons in a disordered  semiconductor must be activated  to beyond the mobility  edge rather

than  simply to the band edge to contribute to the conductivity.  This activated  process would be

manifested  in a conductivity  of the form
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where E and FE are the mobility edge and Fermi energy, respectively. This form should

reveal itself as the slope in an Arrhenius plot of the conductivity,  i.e. a plot of ln vs. 1/T :
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Metallic Conductivity

The semi-classical conductivity can be written in the form

2 2 2
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(9.4)

where n is the density of conduction  electrons, m and e are the electron mass and charge,

respectively,  is a scattering  time, l is the mean free path,  and vF and kF are the Fermi velocity

and wave vector. The density n of electrons is proportional to temperature in semiconductors,

however in metals it is constant value, and conductivity depends on l, which in its turn is

determined by scattering processes.

Conductivity in nanowires

Several physical reasons predict that the conductivity of a nanowire will be much less than that

of the corresponding bulk material. First, there is scattering from the wire boundaries, whose

effect will be very significant whenever the wire width is below the free electron mean free path

of the bulk material. In copper, for example, the mean free path is 40 nm. Copper nanowires less

than 40 nm wide will shorten the mean free path to the wire width. The conductivity of a

nanowire can be studied suspending it between two electrodes.

Nanowires show peculiar electrical properties due to their size. Unlike carbon nanotubes, whose

motion of electrons can fall under the regime of ballistic transport (meaning the electrons can

travel freely from one electrode to the other), nanowire conductivity is strongly influenced by

edge effects. The edge effects come from atoms that lay at the nanowire surface and are not fully

bonded to neighboring atoms like the atoms within the bulk of the nanowire. The unbonded

atoms are often a source of defects within the nanowire, and may cause the nanowire to conduct

electricity more poorly than the bulk material. As a nanowire shrinks in size, the surface atoms

becomes more numerous compared to the atoms within the nanowire, and edge effects become

more important.

Furthermore the conductivity can undergo a quantization in energy: i.e. the energy of the

electrons going through a nanowire can assume only discrete values, multiple of the Landauer

constant G = 2e2 / h (where e is the charge of the electron and h is Planck's constant).
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The conductivity is hence described as the sum of the transport by separate channels of different

quantized energy levels. The thinner the wire is, the smaller the number of channels available to

the transport of electrons.
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Chapter 10 Application

As described, nanostructures, whether it be quantum dots, wires or wells, have

interesting size dependent optical  and  electrical properties. The study of these intrinsic

properties is the realm of nanoscience.

Since there  are  almost  too  many  applications of nano to  catalog  here, this  section

is not  meant to be comprehensive.   However, we briefly touch upon some applications

of quantum wells, quantum wires and quantum dots that are seen in the current literature

10.1 Nanowires

We begin with a short discussion about applications of nanowires.  Devices using these

low dimensional materials have not been made to any great extent.    This is because the

historical  development  of nanostructures  seems to have skipped  nanowires,  moving

from wells to dots  first.  More recently, though,  researchers  have  learned  how to

make  asymetric  nanowires  using a  number  of approaches   including  vapor-liquid-

solid   (VLS)  and  solution- liquid-solid  (SLS)  growth.   The  move to  applications has

occured  quickly with  the  key selling point being  that, in addition  to  exhibiting

quantum confinement effects, nanowires are at the same time (as their  name implies)

wires.  This  means  that making  electrical  connections  to the  outside  world and

assembling  actual  devices may  be a lot easier than  with  other  nanostructures such as

quantum dots.

Crossed nanowire junctions have been made, using p-type and n-type wires.   These

junctions, in turn, serve as diodes in one case, memory elements in another and even

electroluminescent devices.  A schematic of such a nanowire device is provided below.

Ultimately, though, the  trick  is to learn how to assemble such nanowires into useful

structures in a convenient and reproducible  fashion.

Nanowires have also been used as sensors by monitoring changes in the conductance

experienced when different compounds or gases are adsorbed to the wire’s surface.  In

this respect,  nanowires may one day be packaged as efficient sensors for minute

amounts  of toxic gases, chemical weapons,  and explosives.
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Figure  10.1: A crossed nanowire junction

Figure 10.2 Conducting polymer nanowire sensor formed directly in microfluidics
device showing (a) actual view of fabricated device, (b) optical micrograph of
microfluidics device and (c) schematic with polyaniline and polypyrrole
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10.2 Quantum Dots

In the realm of colloidal quantum dots the following applications have been proposed:

 Quantum dots for biological labeling

 Quantum dots as lasing elements

 Quantum dots as sensitizers  in photovoltaic applications

 Quantum dots for active  layers in light emitting  diodes

 Quantum dots as memory elements;  single electron  transistors

Brief descriptions of each application and  reasons  why quantum dots  have distinct

advantages over conventional solutions  are presented  below.

Medicine; Biological labeling

Conventional biological labeling is currently carried  out  using organic fluorescent

molecules or in some cases radioactive sources.  In the case of organic fluorophores

such as tetramethylrhodamine (TMR), these molecules are covalently  attached to a

biological specimen of interest through specific linking chemistry.   Organic

fluorophores exhibit  several disadvantages. Namely, organic dyes suffer from an effect

called photobleaching where after  exposure to  incident light for a modest  amount of

time,  they  undergo  some sort  of photochemistry which  ultimately renders  them non-

fluorescent.   Basically the dyes “fade”.  This makes labeling and tracking experiments

difficult be- cause of the finite observation window one has before the fluorescent signal

disappears.    As a general rule of thumb, organic dyes will absorb and/or emit

approximately 106 photons before photobleaching.   In addition, organic dyes typically

have fairly discrete absorption spectra.  So from dye to dye their absorption wavelength

or energy will change dramatically.  This makes multicolor experiments difficult

because exciting each dye requires a different excitation color. Proper filtering of the

desired emission signal becomes increasingly  difficult in this environment of multiple

excitation frequencies.  Finally, achieving different colors for these multicolor

experiments may mean  synthesizing  different compounds,  which, in itself, can be

fairly involved.
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Quantum dots, especially CdSe have narrow  emission spectra  (∼ 30 nm FWHM).

Furthermore, because of quantum confinement effects,  different sized dots  emit

different colors (one material, many  discrete  colors).  This eliminates the need for

synthesizing  many different organic fluorphores.  As one progresses  to  higher

energies in the  dot  absorption spectra,  there  are increasingly larger  numbers  of

excited  states  present.    This  is analogous to solutions  of the  particle  in a 3D box

with  progressively  larger  quantum numbers, n.   So all  dots  whether  they  be

“small”  or  “large”  will absorb excitation wavelengths in the  “blue”.   This  makes

multicolor  experiments easier since it eliminates  the need for multiple  excitation

wavelengths.  One laser, say the 488 nm line from an argon ion, can be used to excite all

dots, giving emission anywhere in the visible. Filtering  the  488 nm line is also much

simpler than  trying  to simultaneously filter the 473 nm, 488 nm, 514 nm,  532 nm,  and

543 nm lines of several lasers (argon  ion lines plus YAG doubled line plus green HeNe

line).  Finally, semiconductor quantum dots are inorganic compounds.  As such they are

somewhat more robust  that organic dyes when it comes to photobleaching. Dots have

been seen to absorb  and emit over 108  photons  before experiencing  irreversible

photobleaching (two orders of magnitude more photons).  Therefore, dots are much

more resistant to fading.  The accompanying figure is a depiction  of this.

The surface chemistry  of quantum dots is still in its infancy.  There is still much that

needs to be understood before we can begin to do specific chemistry,  attaching dots to

specific sites on proteins or cells or other biological specimens.  This is an area where

organic dyes still prevail.    Furthermore,  semiconductor quantum  dots,  although

nanometer sized,  may  also be a little too  big for some labeling  experiments.  There

might be certain  membranes  or cellular regions that a dot cannot  penetrate because  of

natural size restrictions (another area  where  organic  dyes  are better).  Finally,

labeling  proteins  or other  specimens  with  relatively  large quantum dots  may  also

perturb the  system  in  unintended ways.   So for example  if one  is trying  to  watch

protein  folding  in  real  time  one  needs to ask whether  the  dots  attached to the

protein  are actually  affecting  the folding and unfolding  pathways.  Consider  the  size

of a typical protein  and the size of a typical quantum dot.
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Figure 10.3 Comparison of a quantum dot  to organic dye photobleaching rate

Figure 10.4: Comparison of quantum dot absorption/emission spectra to organic  dye

absorption emission spectra in light of multicolor labeling experiments
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Lasing

Lasers are important devices used in everything  from tomorrow’s  national missile

defense system  (Reagan  Star  Wars  Version  2.0),  the  data  reading element in your

DVD  or CD  player,  the  red  bar  code scanner  at  the  su- permarket to  an  excitation

source  in the  laboratory.   Conventional lasing sources  are  based  on gases,

semiconductors and  even organic  dyes.   With the  general  movement towards  solid

state  lasers,  semiconductors have  re- ceived  a lot  of interest for diode  laser

applications.  Further  interest was generated  with the realization  of semiconductor

nanostructures (also called low dimensional  materials) since it was realized that these

systems could po- tentially make even more efficient lasers than  their  bulk

counterparts. This has to do with the density  of states  argument that we discussed in

previous chapters. The density  of states  argument won’t be repeated  here but  rather is

briefly summarized  in the  accompanying  figure.   In this  area,  quantum well lasers

have led the technology,  producing  some of the most efficient and tunable  lasing

systems to date.  Nanowires have recently  been made to lase but  the technology  in its

infancy as with lasing in quantum dots.  However, one can envision that the size

dependent emission spectra  of quantum dots, wires or wells make them  attractive

lasing elements.  In the specific case of colloidal quantum dots, the emission from CdSe

is shown to span the entire visible part  of the  spectrum. So, in principle,  a single

device could carry  a CdSe blue laser,  a CdSe green laser  and  a CdSe red  laser.   One

potential drawback  with this system though  is a phenomenon  called Auger ionization,

which might ultimately limit the applicability of this material. However, we leave it  to

the  reader  to  do some outside  reading  if they  are  interested in this subject.

Energy; Photovoltaics

Renewable energy has been an area of great interest since the 1973 OPEC  oil embargo,

in retaliation for our support of Israel in the 1973 Yom Kippur War The  idea for

alternative sources of energy is to eventually  move away from coal or petroleum  based

sources of energy.   Motivating this  are  economic,
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political  and environmental reasons.  Solar energy is one facet of renewable energy with

wind, methanol, and  hydrogen  being others.   The  idea here is to  take  advantage of

the  sun’s abundant energy  and  convert  it  to  usable energy  much  like how Nature

has come up  with  photosynthesis in plants. What’s needed, however, is an active

material  like chlorophyl that can absorb solar radiation and  provide  efficient charge

separation to prevent radiative or nonradiative recombination in the material.

Commercial  solar cells are currently made of silicon. Unfortunately, the efficiencies of

these  devices  is typically  on the  order  of 15%.   So most  of the  solar  energy

collected  by these  devices is wasted.   To  make  up  for all of these  losses, large  tracts

of land  must  be used  for vast  sprawling fields of solar cells (solar farms).  Improved

devices made  of single crystal  silicon have been shown to achieve conversion

efficiencies of 30% but  at the cost of being very expensive and impractical for

commercial use. As a consequence solar energy has not broken through into mainstream

use.

Quantum dots  come into  play  for several  reasons.   They  have  tunable, size

dependent, absorption and  emission spectra.   Different  quantum dots can  be  made  to

absorb  anywhere  from  the  UV  into  the  infrared.    This tremendous dynamic  range

cannot  be matched  by organic  dyes.   Further- more,  there  are  few organic  dyes  that

are  efficient  in the  infrared.    As a side note,  one can  imagine  a quantum dot  based

solar  cell that operates under  cloudy  conditions  and  rainy  days  where the  overcast

sky will block much  of the  visible yet  still transmits most  (if not  all) of the  infrared.

In addition, the absorption cross section or exctinction coefficient of quantum dots  is

generally  an order  of magnitude greater  than  conventional organic dyes.   This  means

it  take  fewer dots  to  absorb  the  same amount of light. Dots are also more

photostable, meaning that they are more likely to reach the 10,000 hour threshold

needed for practical commercial devices. Further- more, nanoparticles when used as

substrates or electrodes in dye based solar cells have much larger surface areas than

conventional bulk substrates. As a consequence, one can adsorb a greater  number  of

dye molecule per unit area in these  hybrid  devices than  in conventional cells.  The

efficiencies of these hybrid  devices is consequently  higher,  reaching  that of

conventional  silicon cells. One of the first of such devices is referred to as the Gratzel

cell after its inventor.
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Lighting; Light emitting diodes

Lighting  hasn’t  changed  all that much since the light bulb was invented  by Edison

and  others  close to a hundred  years ago.  More efficient fluorescent lighting  has since

been developed  but  suffers from flicker and  color purity issues.  Recently  solid state

light emitting  diodes (LED)  have come on the market  and are poised to revolutionalize

the lighting industry. LED devices that exhibit  tremendous brightness (look at some of

the new red and green traffic lights),  consume little  power, come in different colors,

and emit little or no heat  (museum  quality  lighting  for paintings) are  now

commercially available.  In this regard,  a major  goal of the LED industry is to

eventually achieve affordable white light by mixing red, green and blue LEDs.  The idea

is to one day replace  all incandescent and  fluorescent light bulbs  in homes and  offices.

Furthermore,  along  these  lines,  brighter, more  efficient,  flat panel  displays  using

this  technology,  rather than  inefficient backlit  liquid crystal  displays,  may  come  out

of these  developments.   Along  the  same lines, cheaper  high definition  digital

televisions  may also emerge from this technology.

A current problem with LEDs, however, is that different active semicon- ductor

elements  must  be manufactured via potentially expensive processes such as MOCVD

to achieve multiple  colors.  For example,  GaN is used for blue light, indium doped

GaN can be used to get green and so forth.  One way to circumvent this problem  is to

take advantage of quantum confinement as in the case of quantum dots.  Different sized

quantum dots will emit different colors so, in principle,  one material  can  cover the

entire  visible spectrum. They can also be manufactured using the same process

potentially lowering overall manufacturing costs.  One disadvantage with current

colloidal quan- tum  dots is that the heterojunction between  the dot and the outside

world is imperfect. There are organic ligands present as well as many quantum dot

surface defects that open up undesired  states  and  recombination pathways in addition

to creating  large resistances  to carrier  transport.
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Memory, the Coulomb staircase

What  would a chapter  on devices and applications be if we didn’t  touch  on computers.

Back in 1965, Gordon Moore, one of the founders of Intel made an empirical

observation that has since become known as “Moore’s law” (or sometimes  referred  to

as Moore’s first law).  The  number  of transistors per unit area on an integrated circuit

doubles each year.  Since then, Moore’s law has generally held with some minor

modifications.  It now doubles every 18 months.   However, as you might suspect,  this

wild growth  cannot continue forever and  it was realized  that with  current

photolithographic techniques that we would be in trouble  by 2010.  To consistently get

more transistors per unit  area means that their  size decreases yearly.  Currently the

features on a Pentium IV chip have spacings on the order of 0.11 microns (110 nm).

Next  generation  chips will have  features  spaced  by 0.09 microns  (90 nm). How

much lower can we go? Well, because of the diffaction limit we cannot continue to use

existing techniques but are forced to invest in deep UV photolithography or x-ray

lithography or even e-beam lithography if we are to  get  smaller  transistors and  stay

on track  with  Moore’s law.   Such new technologies are very expensive and potentially

too costly to scale up to the fab level (Moore’s second law of costs).   Because  of this,

researchers  have looked to nano for a solution.  Among the  ideas people have come up

with are what  are refered to as single electron  transistors.

Early on, researchers  realized that if one has a very small metal nanopar- ticle, its

capacitance might be large enough to store discrete  charges.  Low- ering  the

temperature also  helps.    Both  work  because  either  raising  the capacitance or

lowering the temperature decreases the value of the thermal energy  relative  to  the

Coulomb  energy  between  discrete  charges.   In turn, this  allows one to store  charges

on the  metal  nanoparticle without having it thermally expelled.  Alternatively, with

semiconductor quantum dots, the discrete  particle  in a box-like energy levels with

spacings large compared  to kT  also means  discrete  steps  in the  conductance of

electrons  through the dot  and the  additional possibility  of storing  charges just  as with

the  metal nanoparticles. These effects could then form the basis of single electron elec-

tronics  of which the  single electron  transistor is a member.  We review the principles

of what is knows as the Coulomb blockade and Coulomb staircase model below because

of its potential importance.
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In  the  orthodox  model  for single  electron  tunneling, a  simple  circuit model  is

considered  as  shown  in  the  accompanying   figure.   Basically  the circuit  consists  of

a perfect  voltage  source and  two capacitors  that may or may  not  have equivalent

capacitances.  In the  orthodox  model,  one of the two capacitors  is generally

considered  to  have  a much  higher  capacitance than  the other.  The region in between

the capacitors  is the “island”  where electrons  can  be  stored. This  region  represents

a  quantum dot  or metal nanoparticle in real life.
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Appendix 1. Crystal structure and

Materials

Solids generally  appear  in three  forms,  amorphous  (no  long range order, glass-like),

polycrystalline (multiple domains)  or crystalline  (a single extended domain with long

range order).  Since nano typically concerns itself with crystalline  metal nanoparticles

and semiconductor nanocrystals, wires, and wells, having a basic picture  of how the

elements  arrange  themselves  in these  nanocrystalline systems  is important.  In this

respect,  crystal structure comes into play in many aspects of research, from a material’s

electronic spectra  to its density  and even to its powder x-ray diffraction  pattern.

Atoms in a crystal are generally pictured as being arranged on an imaginary lattice.

Individual  atoms  (or  groups  of atoms)  are  hung  off of the lattice,  much  like

Christmas ornaments. These individual (or groups of ) atoms  are referred to as the

“basis”  of the lattice.  The endless repetition of basis atom(s) on a lattice makes up the

crystal.   In the simplest case, the basis consists of only a single atom and each atom is

located directly over a lattice point.   However,  it  is also very common  to  see a basis

consisting of multiple  atoms,  which  is the  case when  one deals  with  binary  or even

ternary semiconductors. Here the basis atoms do not necessarily sit at the same position

as a lattice point, potentially causing some confusion when you first look at the crystal

structures of these materials.

There  are  14 three  dimensional  Bravais  lattices  shown  in  Figure A1.1.



These  are also referred  to as conventional unit  cells (i.e.  used in everyday life) as

opposed to the primitive  unit cell of which only the simple cubic lattice  qualifies.  That

is, most  of these  unit  cells are not  the simplest  repeating  units  of an  extended  lattice;

one can find even simpler repeating  units  by looking harder.   Rather, these conventional

cells happen to be easy to visualize and interpret and hence are the ones most commonly

used.

Figure A1.1: 14 3-dimensional  Bravais  lattices.

Single element  crystals

In the case of metals,  the cubic lattices  are important, with particular  emphasis  on the

face centered  cubic  (FCC)  and  body  centered  cubic  (BCC) structures. Both  FCC
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and  BCC structures have a single atom  basis; thus, they strongly  resemble the Bravais

lattices  or conventional unit cells seen in the  previous  diagram.   The  number  of atoms

per unit  cell in the  FCC  case is 4 (8 corner atoms  and 6 face atoms).  Likewise, the

number of atoms  per BCC unit  cell, using the  above counting  scheme, is 2 (1 interior

atom  and 8 corner  atoms).    Note  that an  alternative name  exists  for the  FCC  unit

cell: cubic close packed (CCP), which should be remembered  when reading the

literature.  Both  unit  cells are  shown in Figures A1.2 and A1.3.  Typical elements that

crystallize  in the FCC structure include:  Cu, Ag, Au, Ni, Pd, Pt,  and Al. Typical

elements  that crystallize  in the BCC structure include: Fe, Cr, V, Nb, Ta, W and Mo.

Analogous to the FCC lattice is the hexagonal close packed (HCP) structure.   A simple

way to  differentiate the  two is the  atomic  packing  order, which  follows ABCABC  in

the  case of FCC  and  ABABA  in  the  case of HCP. The letters A, B, and C etc.

represent different atom  planes.   The HCP structure has a conventional unit cell but also

a primitive unit cell shown in Figure A1.4 It contains  2 atoms per unit  cell (8 on the

corners and 1 inside) as opposed to the conventional cell which has 12 per cell.

Another conventional unit cell that is often encountered is called the “diamond” structure.

The diamond structure differs from its FCC and BCC counterparts because it has a multi

atom  basis.  Therefore, it does not im mediately  resemble any of the 14 Bravais  lattices.

It is adopted by elements that have a tendency to form strong covalent bonds,  resulting

in tetrahedral bonding arrangements (Figure A1.5).  The number of atoms per unit  cell

in this  case is 8 (8 corner  atoms,  4 interior  atoms,  6 face atoms).    Some common

elements  that crystallize  in the  diamond  structure include:  C, Si, Ge and  Sn.

Compound crystals

In the  case of binary  compounds,  such as III-V and  II-V semiconductors, things  get a

little  more complicated.  One doesn’t have the  benefit  of conventional  unit  cells that

resemble  any  of the  14 standard Bravais  lattices. Instead  these  conventional unit  cells

often have names  such as the  NaCl structure or the ZnS structure and so forth.  This is

because, unlike simple FCC  or BCC  metals,  we no longer have  a single atom  basis,

but  rather a basis  consisting  of multiple  atoms  as well as a basis  made  up  of different

elements.
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Figure A1.2 FCC  unit cell

Figure A1.3 BCC unit  cell
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Figure A1.3 BCC unit  cell
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Figure A1.2 FCC  unit cell

Figure A1.3 BCC unit  cell
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Figure A1.4 Primitive hexagonal  unit  cell.

Figure A1.5 Diamond  structure unit  cell
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Figure A1.5 Diamond  structure unit  cell
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Common crystal lattices for semiconductors include the ZnS, NaCl and CsCl lattices.

The  ZnS, also called  zinc blende  (ZB)  or sphalerite, structure can  be visualized  as

two  interpenetrating FCC  lattices  offset by (1/4 1/4 1/4) in Figure A1.6. It is

identical to the diamond structure we saw in the case of single element crystals. The

only real difference is that now we have two elements making up the atom basis of the

unit cell.   Using the above counting scheme we find that there are 8 atoms per unit cell.

This is further subdivided into 4 atoms of element 1, and 4 atoms of element 2. You will

notice in the figure that the 4 atoms of one element are completely inside the unit cell

and that the atoms of the other element are arranged as 8 corner and 6 face atoms.

The NaCl structure can be visualized as 2 interpenetrating FCC lattices offset by ( 1/2 ,

0, 0) in Figure A1.7. It has 8 atoms per unit cell. This is broken up into 4 atoms from

element 1 and 4 atoms from element 2.  One can see in the figure that for element 1

there are 8 corner atoms and 6 face atoms. For element 2 there are 12 edge atoms and 1

interior atom.

The  CsCl  structure is the  compound  material  version  of the  single element BCC

unit  cell. It is shown in Figure A1.8 where  one can  see that there are two elements

present with one of them being the center atom.  The atoms from the other element take

up corner positions in the unit cell. The CsCl has two atoms per unit cell, 1 from each

element.

The  wurtzite  crystal  structure is the  compound  material  version of the single element

HCP structure. It has a multi atom basis.  The primitive unit cell is shown in Figure A1.9

and contains 4 atoms per unit cell, 2 atoms from element 1 and 2 atoms from element 2.
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Figure A1.6. Zincblende  or ZnS structure unit  cell.

Figure A1.7 NaCl structure unit  cell.
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Figure A1.8 CsCl structure unit  cell.

Figure A1.9 Primitive wurtzite  unit  cell.
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Miller indices

Sometimes you will see the orientation of a crystal  plane described by (001) and  so

forth. These numbers are referred to as Miller indices. They are generated  using some

simple rules described  below.

 Take  the  desired  plane  and  see where  it  intersects each x, y, z axis in

multiples  of the  lattice  constant. For the case of cubic lattices the lattice

constant, a, is the same in all x, y, and z directions.

 Next take the reciprocal of each intersection point and reduce the three values to

their lowest integer values.   (i.e. divide out any  common integer)

 Express  the plane through these integers  in parentheses as (abc)

 Should the plane not intersect an axis, say the z axis, just write a 0. For example

(ab0)

 If the  intercept is in the  negative  side of an axis, say the y axis, just put  a bar

over the number,  for example  abc .

Examples  are illustrated in Figures A1.10 and A1.13.

Figure A1.10: Examples  of using Miller indices
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Figure  2.13: More examples of using Miller indices.

.

Common Metals

Table A1.1: Common  metals

 Ag=FCC [cubic] (alternatively called  cubic closest  packed)

 Au=FCC [cubic] (alternatively called  cubic closest  packed)
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Common Semiconductors

Group  IV

Table A1.2: Group  IV semiconductors

 Si=diamond structure

 Ge=diamond structure

Group III-V

Table A1.3: Group  III-V semiconductors

 GaN=ZB [cubic] (alternatively called  ZnS structure)

 GaAs=ZB [cubic] (alternatively called  ZnS structure)

 InP=ZB [cubic] (alternatively called  ZnS structure)

 InAs=ZB [cubic] (alternatively called  ZnS structure)
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Group II-VI

Table A1.4: Group  II-VI semiconductors

 ZnS=ZB  [cubic]

 ZnSe=ZB  [cubic]

 CdS=ZB [cubic]

 CdSe=wurtzite [hexagonal]

 CdTe=ZB [cubic]

Group IV-VI

Table A1.5: Group  IV-VI semiconductors

 PbS=NaCl structure

 PbSe=NaCl structure

 PbTe=NaCl structure
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Appendix 2. Bragg’s Law of

Diffraction

The diffraction of X-ray from a crystal can also be easily understood in terms of which

was first proposed by Bragg. In this model, an X-ray which reflects from the surface of a

substance has traveled less distance than an X-ray which reflects from a plane of atoms

inside the crystal. The penetrating X-ray travels down to the internal layer, reflects, and

travels back over the same distance before being back at the surface. The distance

traveled depends on the separation of the layers and the angle at which the X-ray entered

the material. For this wave to be in phase with the wave which reflected from the surface

it needs to have traveled a whole number of wavelengths while inside the material.

Bragg expressed this in an equation now known as Bragg's Law:

When n is an integer (1, 2, 3 etc.) the reflected waves from different layers are perfectly

in phase with each other and produce a bright point on a piece of photographic film.

Otherwise the waves are not in phase, and will either be missing or faint.

Derivation of Bragg’s Law:
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Note that

sinh d  ( A2.1 )

so the path length difference between these two beams are

2 sinl d   ( A2 .2)

The phase  difference will be: 

  2 sin 2d     ( A2 .3)

When this phase difference is equal to 2 n (with n being an integer) we will have

constructive interference.  This leads to the Bragg equation:

  2 sin 2 2d n    ( A2 .4)

or

2 sinhkld n  ( A2 .5)

In general, we only need to consider the first order diffraction (n=1) as diffractions of

high orders can be considered as the first order diffractions from planes with an

interplaner spacing of hkld /n. For example, the second order diffraction from (100)

planes can be considered as the first order diffraction from (200) planes.
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Appendix 3. Review of Quantum

Mechanic

In Classical Mechanics, a state of a particle’s motion is specified by its position and

momentum. In Quantum Mechanics, the  state of motion  for a particle  is not specified

by its  position  and  momentum.    In  fact,  the  position  and  momentum  cannot  be precisely

determined  simultaneously.    Instead,   the state of motion  for a  quantum particle  is

described  by a wavefunction (or state function) which extends  to  a large region of space, and

can be a complex function.  Typically, a (time independent) wavefunction of a stationary state

for a quantum particle  is written  as

 k r


where k represents  one set of so-called quantum numbers, usually discrete.  Examples of

quantum numbers are linear momentum, angular momentum,  etc.  Different set of quantum

numbers, say, k1, k2, …, represent different wavefunction

   
1 2

, ...k kr r 
 

which correspond to different states  of the particle’s motion.  Therefore, one can use these

discrete set of quantum numbers to characterize state  of the particle’s motion. A state function

suc as  k r


cannot be measured directly. It has a meaning



of probability: its modular   2

k r


gives the spatial distribution of a particle’s position

in a state with quantum number k. Hence, in this representation of a quantum state, the

quantum number  (e.g., momentum)  is known precisely, but  particle’s position is

unknown (known by a probability distribution).

Wavefunction should satisfy the following conditions:

1. Since   2

k r


has the meaning of distribution, it must be normalizable

  2
3 1k r d r 


(A3.1)

2. Linear superposition of wavefunctions also describes the particle possible states.

If    
1 2

,k kr r 
 

are two possible states  of a particle, their linear summation

     
1 21 2k kr C r C r   

  
(A3.2)

is also a state  of the  particle.   In the  above (A3.2) C1 and C2 are  any  two

complex numbers.

In quantum mechanics, all observables become operator, represented  by headed

notation,  e.g., Â . An operator  is meant to act the function describing particle states,

and the result is another function also corresponding to particle state.

The  experimentally   measurable quantity is the so-called expectation  value of Â is a

mean value

3ˆ ˆ*A A d r   (A3.3)

In so called coordinate representation the following correspondence takes place between

classical quantities and quantum operators (correspondence pronciple):

ˆ

ˆ

r r r

p p i

 

   



 


(A3.4)

And in general

   ˆ, ,F r p F F r i   
   

 (A3.5)
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
are

23 3

3 3

ˆ ˆ*

ˆ ˆ* *

r r d r r d r

p p d r i d r

  

   

 

   

 

 






(A3.6)

According to a correspondence principle, the Hamiltonian operator of a particle is given

by

   
2

2 2

2 2 2
2

2 2 2

1ˆ ˆ
2 2

H p V r V r
m m

x y z

     

  
   

  

 

(A3.7)

Hamiltonian operator corresponds to total energy of a system. In stationary condition

Hamilton operator does not depend on time explicitly, and wave function and

corresponding energies can be found my means of Schrödinger equation

Ĥ E  (A3.9)

i.e

 
2

2

2
V r E

m
 

 
    
 


(A3.10)

This is a problem of finding  operator eigen vectors  and eigen values.

As it is  known form linear algebra, if two operators Â and B̂ commute with each

another,

ˆ ˆˆ ˆ 0AB BA  (A3.11)

they have got the same eigen vectors. In quantum mechanics we say that, if two operator

commute with each another, the values of physical quantities corresponding to them, can

be measured simultaneously.

In stationary condition physical quantity is measurable, if corresponding operator

commutes with Hamilton operator. Wave function depends on quantum numbers, each

of which corresponds to one of the commuting with Hamiltonian operator.
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For  example,  the  expectation  value  of position  and  momentum  of a particle  at  in

state  r 



Appendix A: k.p Method

A.1 Band Theory: Bloch Functions

A solid consists of many atoms and electrons. The total energy of the system is therefore the

sumof the kinetic energies of all the nuclei and electrons, the potential energy due to nuclear

forces, the potential energies of electrons in the field of nuclei, the potential energy due to

electron–electron interactions, and the magnetic energy associated with the spin and the

orbit. The total Hamiltonian of the systemmay be constructed accordingly. The formidable

problem of solving the resultant Schr€odinger equation is bypassed by introducing several

approximations. Since the motion of nuclei is sluggish, the electrons instantaneously adjust

their motion to that of the ions. The total wavefunction is then written as a wavefunction for

ions fðRÞ and that for all electrons cðr;RÞ instantaneously dependent on all ionic positions
R. An approximation, known as the adiabatic approximation, is introduced to decouple the

Schr€odinger equation into a purely ionic and a purely electronic equation, which are

expressed, respectively, as

HLfðRÞ ¼ ELfðRÞ ðA:1Þ
and

Hecðr;RÞ ¼ Eecðr;RÞ ðA:2Þ
where r denotes the electronic coordinates [1, 2].

The electron potential energy is due to electron–electron and electron–ion interactions.

If a suitable average is found for the first, a constant repulsive contribution can be added to

the electron energy and then each electron becomes independent. The one-electron

Schr€odinger equation then takes the form

Heiciðri;RÞ ¼ Eeiciðri;RÞ ðA:3Þ
where

Hei ¼ p2i
2m0

þ
X
i

Vðri;RiÞ ðA:4Þ
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and pi is the momentum of the ith electron. The Hamiltonian still depends on the

fluctuating position of the ion. In the next approximation, the ions are assumed to lie in

their equilibrium position and the effect of ionic vibration is taken as a perturbation. Thus

the problem is reduced to solving the equation

p2

2m0

þ
X
i

Vðr�R10ÞcðrÞ ¼ EcðrÞ ðA:5Þ

The ionic potential V is periodic and the eigenfunctions are Bloch functions expressed as

cnkðrÞ ¼ UnkðrÞ exp ðjk:rÞ; ðA:6Þ
where the cell periodic part U(r) obeys the relation

UnkðrþRÞ ¼ UnkðrÞ: ðA:7Þ
In the above equations,R is a vector of the Bravais lattice, n denotes the band index, and k is
a wave vector of the electron in the first Brillouin zone. From Eqs. (A.6) and (A.7)

cnkðrþRÞ ¼ cnkðrÞ exp ðjk:RÞ
The Bloch functions are eigenfunctions of the one-electron Schr€odinger equation and

therefore they are orthogonal to one another. Thusð
cn0k0cnkd

3r ¼ dn0;ndk0k ðA:8Þ

The wavefunctions are also normalized over the volume V of the crystal and therefore

cnk ¼ V�1=2UnkðrÞ exp ðjk:rÞ ðA:9Þ

A.2 The k.p Perturbation Theory Neglecting Spin

Complete knowledge of the band structure of a semiconductor requires that the full E–k
dispersion relation be known completely. The Schr€odinger equation should therefore be

solved completely. This is a rather difficult task since the form of the periodic potential V(r)

must be specified. Fortunately, in most descriptions of the electron and hole properties in

semiconductors, the mostly populated electron and hole states lie within a fraction of an eV

from the band edges. Thus, if thewavefunctions and energies of the carriers are known at the

band extrema, then perturbation methods may be applied to find out the wavefunctions and

energies at other points in the Brillouin zone, leading to knowledge of the E–k relationship.
The method, known as k.p perturbation theory, is most widely used in the study of transport

and optical processes in common semiconductors [3–9].

The k.p perturbation theory is based on the fact that the cell periodic part Uk of the

electrons, for any value of k but different bands, forms a complete set. Let us consider the

wavefunctions for the electrons having a value k near the minima in the nth band. For

simplicity we assume that the minima are located at k¼ 0. The theory is applicable also

when the minima are located at k¼ k0. The wavefunction is given by

c ¼ UnkðrÞ expðjk:rÞ ¼
X
m

cmUm0ðrÞ
" #

exp ðjk:rÞ; ðA:10Þ
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since Um0 forms a complete orthonormal set. Using this form of c in the Schr€odinger
equation, one obtains

� h2

2m0

r2 þ h2

m0

k:pþ h2k2

2m0

þVðrÞ
� �

UnkðrÞ ¼ EnðkÞUnkðrÞ: ðA:11Þ

However, Um0 is the wavefunction for k ¼ 0 in the nth band satisfying the equation

� h2

2m0

r2 þVðrÞ
� �

Um0ðrÞ ¼ Emð0ÞUm0ðrÞ: ðA:12Þ

We now put Eq. (A.10) in (A.11) and use (A.12) to obtain

X
cm Emð0Þþ h2

2m0

k2 þ h2

m0

k:p

� �
Um0ðrÞ ¼

X
m

cmEnðkÞUm0ðrÞ: ðA:13Þ

Multiplying both sides of Eq. (A.13) by U*
l0ðrÞ and integrating over a volume of a unit

cell (Vc), the following set of linear homogeneous equations is obtained:

cl EnðkÞ�Elð0Þ� h2

2m0

k2
� �

�
X

cm
h

m0

ðk:plmÞ ¼ 0; ðA:14Þ

where

plm ¼
ð
Vc

U*
l0ðrÞ pUm0ðrÞd3r: ðA:15Þ

By giving l successive integer values, one obtains the full set of equations.

In the general case, the set of equations has a nontrivial solution if the determinant of the

coefficients cl is zero. This condition gives the energy eigenvalues En(k) in terms of the

quantities Em(0) and plm. The relative values of the expansion coefficients cm are then

obtained by using the values of En(k). The absolute values of cm are obtained by imposing

normalization conditions on c. The accuracy of the calculation is increased if many such

coefficients are included. For practical reasons we need to limit ourselves to a few bands.

The bands of greatest interest in common semiconductors are conduction (C), heavy hole

(HH), light hole (LH), and split-off (SO) bands. Each of these four bands has two spin

components, so there are altogether eight bands. Depending on the problem at hand and the

degree of accuracy required, wemay use some or all of these eight bands.We present below

the results by using different approximations regarding the number of bands.

A.2.1 Single-Electron Band

Let us assume thatUnk is determined mostly byUn0 and the contributions from other bands

are smaller. In other words, we assume that cmðm 6¼ nÞ � cn. Then

c ¼ cnUn0ðrÞþ
X

cmUm0ðrÞ
h i

exp ðjk:rÞ: ðA:16Þ

Sincec is normalized,
P

m cmj j2 ¼ 1; but we have assumed cm � cn. It follows, therefore,

that cn � 1.
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To solve Eq. (A.16), stationary perturbation theory is applied. First, neglect cm (m 6¼ n) in

comparison to cn in the nth equation. The result is

EnðkÞ ¼ Enð0Þþ h2k2

2m0

þ h

m0

k:pnn: ðA:17Þ

Next put cn¼ 1 and obtain from Eq. (A.14)

cm � h

m0

k:pmn

Enð0Þ�Emð0Þ cn; ðA:18Þ

neglecting the k.p term in the denominator. If this expression for cm is now used in

Eq. (A.14), a second-order approximation results and one obtains

EnðkÞ ¼ Enð0Þþ h2k2

2m0

þ h

m0

k:pnn þ
X
m 6¼n

h

m0

� �2
k:pnnj j2

Enð0Þ�Emð0Þ : ðA:19Þ

Since the extrema occur at k¼ 0, pnn¼ 0. Therefore, by choosing a proper coordinate

system, one may write

EnðkÞ ¼ Enð0Þþ h2k2

2mi

;

where, from Eq. (A.19),

1

mi

¼ 1

m0

þ 2

m0
2

X
m

i:pnmj j2
Enð0Þ�Emð0Þ ; ðA:20Þ

where i is a unit vector along the ith coordinate axis. The above equation predicts a parabolic

E–k relation.

The analysis presented in this subsection may be improved by combining with the band

under consideration other bands close to it and treating the effects of the additional bands as

small perturbations.

A.2.2 Four Bands

We now consider four bands: the C, HH, LH, and SO bands. The valence bands are triply

degenerate, and the C-band minima and H-band maxima occur at k¼ 0. For the present, the

spin–orbit interaction is neglected.We denote the cell periodic parts of the conduction band

byUc and those of the three valence bands byUv1;Uv2;Uv3. Also the symbols Ec and Ev are

used to denote, respectively, the energy for conduction band minima and valence band

maxima. We may write the wavefunction for any k as

c ¼ ðakUc þ bkUv1 þ ckUv3 þ dkUv2Þ exp ðjk:rÞ; ðA:21Þ
in accordance with Eq. (A.10). Using the symbol E0 ¼ E� h2k2=2m0, the linear homoge-

neous equations are

akðE0�EcÞ� h=m0ð Þk:ðbkpcv1 þ dkpcv2 þ ckpcv3Þ ¼ 0

�akðh=m0Þk:pcv1 þ bkðE0�EvÞ�ðh=m0Þk:ðdkpv1v2 þ ckpv1v3Þ ¼ 0

�akðh=m0Þk:pcv2�bkðh=m0Þk:pv1v2�dkðE0�EvÞ�ðh=m0Þk: ¼ 0

�akðh=m0Þk:pcv3�bkðh=m0Þk:pv1v3�dkðh=m0Þk:þ ckðE0�EvÞ ¼ 0

ðA:22Þ
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The quantities pcv1, pv1v2, and so on are defined in Eq. (A.15). The matrix elements may

be evaluated once theUs are known. SinceUc is an atomic s-like function and theUv’ s are p-

like functions, the k.pcv1 term may be expressed as

h1 ¼ h2

m0j

ð
U*

t kx
@

@x
þ ky

@

@y
þ kz

@

@z

� �
Umd

3r t;m ¼ s; x; y; z: ðA:23Þ

Since @=@xð ÞUs is an odd function of x, the matrix element
Ð
U*

j ð@=@xÞUs dx is nonzero

only when j¼ x. The same is true for
Ð
U*

s ð@=@xÞUjdx. The function ð@=@xÞUy is odd in

both x and y. Thus ðð
U*

j

@

@x
Uydxdy ¼ 0; j ¼ s; x; y; z:

The only nonvanishing matrix elements are the ones defined by the following

expressions:

P ¼ � h2

m0

ð
Uj

@

@j
Usd

3r ¼ � h2

m0

ð
Us

@

@j
Ujd

3r; j ¼ x; y; z: ðA:24Þ

In the following, we shall assume that k is parallel to the z direction. Thenwemay rewrite the

four homogeneous equations (A.22) as

akðE0�EcÞ�ckPk ¼ 0;

bkðE0�EvÞ ¼ 0;

�akPkckðE0�EvÞ ¼ 0;

dkðE0�EvÞ ¼ 0:

ðA:25Þ

The energy eigenvalues are thus given by

E0 ¼ Ec;EV and ðE0�EcÞðE0�EvÞ�P2k2 ¼ 0: ðA:26Þ
These equations give the dispersion relations when the conduction bands and valence

bands are strongly coupled. Denoting the energy gap by Eg ¼ Ec�Ev, we may write

Eq. (A.26) as

ðE0�EcÞðE0�Ec þEgÞ�P2k2 ¼ 0:

When E0 tends to Ec, we may neglect E0–Ec in comparison to Eg and write

ðE0 �EcÞEg ¼ P2k2: ðA:27Þ
If the band edge effective mass is denoted by me0, we obtain

P2 ¼ E�Ec� h2k2

2m0

� �
Eg

k2
¼ h2

1

me0

� 1

m0

� �
Eg

2
: ðA:28Þ
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A.3 Spin–Orbit Interaction

The electron is a fermion with spin 1/2 in units of h. In classical mechanics, a point particle

rotating about an axis has an angular momentum L ¼ r� p. In the quantum picture, the

angular momentum of a point particle is quantized and the intrinsic value of the momentum

is called the spin. There is strong interaction between the spin and orbital motion of the

electrons. This spin–orbit coupling may be calculated for isolated atoms; however, it is

difficult to do so in crystals.

A.3.1 Spin–Orbit Interaction Term

To calculate the interaction a general form of spin–orbit interaction is assumed with a fitting

parameter that is adjusted to fit experimentally observed effects. The total Hamiltonian in

the presence of spin–orbit interaction is written as H ¼ H0 þHso, where H0 is the

Hamiltonian without interaction and Hso is the spin–orbit interaction written as

Hso ¼ lL � S: ðA:29Þ
Here L represents the operator for orbital angular momentum, S is the operator for spin

angular momentum, and l is treated as a constant. The total angular momentum J may be

expressed as

J2 ¼ ðLþ SÞ2 ¼ L2 þ S2 þ 2L � S: ðA:30aÞ
Thus

L � Sh i ¼ ð1=2Þ J2�L2�S2
� � ¼ h2

2
jðjþ 1Þ�lðlþ 1Þ�sðsþ 1Þ½ �; ðA:30bÞ

where j, l, and s are the quantum numbers for the operators J, L, and S, respectively.
However, to calculate the spin–orbit interaction energy, one needs the pure angular

momentum states to which Eq. (A.30) is applicable. One should note that states like

Xaj i are mixed states, with the symbol a denoting the spin-up state. To illustrate this

statement, we express Xj i in terms of pure angular momentum states, that is,

Xj i ¼ 1ffiffiffi
2

p ð�f1;1 þf1;�1Þ

Yj i ¼ jffiffiffi
2

p ðf1;1 þf1;�1Þ

Zj i ¼ f1;0

ðA:31Þ

The fi;j’s are pure angular momentum states, and the expressions for the lower eigenstates

are

f1;�1 ¼ Y1;�1ðy;fÞ ¼ 	
ffiffiffiffiffiffi
3

8p

r
sin y exp ð�jfÞ

f1;0 ¼ Y1;0ðy;fÞ ¼
ffiffiffiffiffiffi
3

4p

r
cos y
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The fi;j’s are eigenfunctions of L
2 and Lz. The respective quantum numbers are l¼ I and

lz¼j. For example, L2f1;�1 ¼ h2ð1Þð1þ 1Þf1;�1 ¼ 2h2f1;�1 and Lzf1;�1 ¼ �1hf1;�1.

Equation (A.31) is modified if spin is included; for example, the spin-up state px ¼ Xaj i is
expressed as

Xaj i ¼ 1ffiffiffi
2

p ð�f1;1 þf1;�1Þa:

This formulation is still in terms of mixed states. To decompose the mixed states into states

of pure angularmomentum, the spin and orbital angularmomentummust be added to obtain

the total angular momentum states. The standard Clebsch–Gordan (CG) technique is

employed for this addition. The following six equations are obtained as a result:

f3=2;3=2 ¼ f1;1a ¼ ð�1=
ffiffiffi
2

p Þ ðXþ jYÞaj i

f3=2;1=2 ¼
1ffiffiffi
3

p f1;1bþ
2ffiffiffi
6

p f1;0a ¼ �1ffiffiffi
6

p ðXþ jYÞbj i� 2Zaj i½ �

f3=2;�1=2 ¼
1

6
f1;0bþ

1ffiffiffi
3

p f1;�1a ¼ 1ffiffiffi
6

p ðX�jYÞaj i þ 2Zbj i½ �

f3=2;�3=2 ¼ f1;�1b ¼ ð1= ffiffiffi
2

p Þ ðX�jYÞbj i

f1=2;1=2 ¼
�1ffiffiffi
3

p f1;0aþ
2ffiffiffi
6

p f1;1b ¼ �1ffiffiffi
3

p ðXþ jYÞbj i þ Zaj i½ �

f1=2;�1=2 ¼
�2ffiffiffi
6

p f1;�1aþ
1ffiffiffi
3

p f1;0b ¼ �1ffiffiffi
3

p ðX�jYÞaj i� Zbj i½ �

ðA:32Þ

These six equations are inverted to find states likef1;0, and from the resultant equations one

gets states like Xaj i, and so on.

Xaj i ¼ 1ffiffiffi
2

p �f3=2;3=2 þ
1ffiffiffi
3

p f3=2;�1=2�
ffiffiffi
2

3

r
f1=2;�1=2

" #

Xbj i ¼ 1ffiffiffi
2

p � 1ffiffiffi
3

p f3=2;1=2�
2ffiffiffi
3

p f1=2;1=2�f3=2;�3=2

� �

Yaj i ¼ jffiffiffi
2

p f3=2;3=2 þ
1ffiffiffi
3

p f3=2;�1=2�
ffiffiffi
2

3

r
f1=2;�1=2

" #

Ybj i ¼ jffiffiffi
2

p 1ffiffiffi
3

p f3=2;1=2 þ
2ffiffiffi
3

p f1=2;1=2 þf3=2;�3=2

� �

Zaj i ¼
ffiffiffi
2

3

r
f3=2;1=2�

1ffiffiffi
3

p f1=2;1=2

Zbj i ¼
ffiffiffi
2

3

r
f3=2;�1=2 þ

1ffiffiffi
3

p f1=2;�1=2:

ðA:33Þ

The phases used in the above expressions for fj;mj
in terms of Xaj i; :::: Zbj i are obtained in

the standard derivation of Clebsch–Gordan coefficients. The overall phase of a state is
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arbitrary and has no effect on the physical predictions. The convention used by Luttinger

and Kohn [10] is in widespread use and will be used here. The states are expressed in terms

of CG states as

f3=2;3=2ðLKÞ ¼ �f3=2;3=2ðCGÞ ¼
1ffiffiffi
2

p ðXþ jYÞaj i

f3=2;1=2ðLKÞ ¼ �jf3=2;1=2ðCGÞ
f3=2;�1=2ðLKÞ ¼ f3=2;�1=2ðCGÞ
f3=2;�3=2ðLKÞ ¼ jf3=2;�3=2ðCGÞ
f1=2;1=2ðLKÞ ¼ �f1=2;1=2ðCGÞ
f1=2;�1=2ðLKÞ ¼ jf1=2;�1=2ðCGÞ

ðA:34Þ

The spin–orbit Hamiltonian may be calculated nowwith the above states. The interaction is

Hso ¼ lh2

2
jðjþ 1Þ�lðlþ 1Þ�sðsþ 1Þ½ � ðA:35Þ

For p-type electron orbitals l¼ 1 and s¼ 1/2, j is given by the first subscript of f in

Eq. (A.33). Many terms become zero as the pure states are orthogonal. We conclude that

only the following terms are nonzero:

Xah jHso Yaj i ¼ Yah jHso Zbj i ¼ Ybh jHso Zaj i ¼ �j
D
3

Xah jHso Zbj i ¼ D
3
; Xbh jHso Zaj i ¼ �D

3
; Xbh jHso Ybj i ¼ j

D
3
;

ðA:36Þ

where D is a parameter known as spin–orbit splitting given by D ¼ Dso ¼ 3lh2=2.

A.3.2 Conduction Band Energy

The calculation of energy levels in the conduction band by including the spin–orbit

interaction is easier, and therefore we consider it first. As mentioned previously, we are

interested in four basic vectors, the Sj i state for the conduction band and the Xj i: Yj i; Zj i
states for the valence bands. There are four coefficients, ak . . .dk as in Eq. (A.21), needed
to describe a state. With the inclusion of spin, the number of basis vectors to be

considered becomes eight. The secular equation containing the coefficients and basis

vectors involves an 8� 8 matrix. It turns out that if the basis vectors are arranged in the

following manner,

Saj i: ðXþ jYÞbj i; Zaj i; ðX�jYÞbj i; Sbj i; ðX�jYÞaj i; Zj i; and �ðXþ jYÞaj i;
the matrix may be written in the form

H 0

0 H

� �
;

where H is a 4� 4 matrix. Using the matrix elements between different states and the

earlier elements obtainedwithout the spin–orbit interactions, wemay express the different
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matrix elements in terms of P in the following form:

Saj i ðXþ jYÞbj i Zaj i ðX�jYÞbj i
Saj i Es�E0 0 �jkP 0

ðXþ jYÞbj i 0 Ep�E0�D=3
ffiffiffi
2

p
D=3 0

Zaj i jkP
ffiffiffi
2

p
D=3 Ep�E0 0

ðXxx�jYÞbj i 0 0 0 Ep�E0 þD=3

ðA:37Þ

To simplify the calculation, we choose the k-vector in (A.37) along the z-direction.

Furthermore, to account for the shift of band energies due to spin–orbit interaction, notations

Ep and Es are used. The difference in signs in Ep�E0 � D=3 is due to the fact that

LzSz ðXþ jYÞbj i ¼ � ðXþ jYÞbj i while LzSz ðX�jYÞbj i ¼ ðX�jYÞbj i. Expanding (A.37)

one obtains

E0 ¼ Ep þD=3 ðA:38aÞ

E0�Ep þ 2D
3

� �
E0�Ep�D

3

� �
E0�Esð Þ�k2P2 E0�Ep þ D

3

� �
¼ 0 ðA:38bÞ

For small values of k2, the cubic equation can easily be solved by treating the term k2P2 as a

small perturbation. This yields

E0
1 ¼ Es þ k2P2ðEs�Ep þD=3Þ

ðEs�Ep þ 2D=3ÞðEs�Ep�D=3Þ : ðA:38cÞ

Let Ev ¼ Ep þD=3 ¼ 0;Ec ¼ Es ¼ Eg0 and Ec�Ev ¼ Eg0, the direct gap. We then rewrite

Eq. (A.38a) as

E0ðE0�Eg0ÞðE0 þDÞ�k2P2ðE0 þ 2D=3Þ ¼ 0: ðA:39Þ
Taking Ec ¼ Eg0 in the first approximation,

EcðkÞ ¼ Eg0 þ h2k2

2m0

þ k2P2

3

2

Eg0

þ 1

Eg0 þD

� �
: ðA:40aÞ

We also obtain, by putting Ev ¼ Ep þD=3 ¼ 0,

Ev1ðkÞ ¼ h2k2

2m0

: ðA:40bÞ

Taking E ¼ 0,

Ev2 ¼ h2k2

2m0

� 2k2P2

3Eg0

: ðA:40cÞ

Finally, taking E0 ¼ �D as a first approximation,

Ev3 ¼ �Dþ h2k2

2m0

� k2P2

3ðEg0 þDÞ : ðA:40dÞ
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In Eq. (A.40a),Ec is the energy of the conduction band electrons, whileEv1,Ev2, andEv3, are,

respectively, the energies of the three valence bands. From Eq. (A.40a), we may define the

band edge effective mass for conduction band electrons by writing

Ec ¼ Eg0 þ h2k2=2me0:

It then follows that

1

me0

¼ 1

m0

þ 2P2

3h2
2

Eg0

þ 1

Eg0 þD

� �
: ðA:41Þ

The momentum matrix element, P, which is central to all calculation of transition

probabilities from the valence band to the conduction band, may be expressed in terms

of me0 as

P2 ¼ h2

2me0

Eg0ðEg0 þDÞ
Ego þ 2D=3

m0�me0

m0

: ðA:42Þ

A.3.3 Valence Band Energies

The earlier treatment of the dispersion relation cannot explain the properties of electrons

in the valence band. Referring to Eq. (A.40a), one notices that the energy of the electrons

increases with k, which however is opposite to what is observed experimentally.

To treat the valence band properties correctly, degenerate perturbation theory is

needed [11].

Let the state of the electron in the lth band at k¼ 0 be degenerate, having f-fold

degeneracy. It follows from the theory of perturbation of degenerate states that the

second-order corrections DEð2Þ due to the ðh=m0Þðk:pÞ perturbation are the roots of the

secular equation

h2

m0

� �2 X0

n;s

l; r0h jk:p n; sj i n; sh jk:p l; rj i
Elð0Þ�Enð0Þ �DEð2Þdrr0

" #
¼ 0; ðA:43Þ

where the primed summation sign indicates that the summation is over all n 6¼ l and over

s. l; rj i and l; r0j i are the unperturbed f-fold degenerate wavefunctions (r, r0 ¼ 1,2,. . .f )
satisfying Eq. (A.43) for the energy eigenvalue El(0). The n; sj i’s are the wavefunctions for
energy levelEn(0). The order of the determinant of the secular equation is equal to the degree

of degeneracy of the levelEl (0). In the present situation, the degenerate eigenstates at k¼ 0

are the three l¼ 1, ml¼ 0, and�1 states. To the second order in perturbation, the energy in

the nth band is

EnðkÞ ¼ Enð0Þþ h2k2

2m0

þDEð2Þ
n ðkÞ; ðA:44Þ
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where DEð2Þ
n is given by Eq. (A.43) above. Hence we have the set of three equations

X3
i¼1

X0

m

jh jHl mj i mh jHl lj i
Elð0Þ�Emð0Þ þ El þ h2k2

2m0

�EnðkÞ
	 


dj;l

" #
n kj i ¼ 0:h ðA:45Þ

Nontrivial solutions of this set of N coupled homogeneous equations occur only if

det Hj j�EnðkÞI½ � ¼ 0;

where I is the identity matrix and H is a 3� 3 matrix whose elements are

Hjl ¼ El þ h2k2

2m0

� �
djl þ

X0

m

jh jHl mj i mh jHl lj i
Elð0Þ�Emð0Þ :

The calculation of the matrix element is first made by ignoring the spin–orbit interaction for

the present. We take the basis sets as Xj i: Yj i and Zj i. Then

H11 ¼ Xh jH Xj i ¼ E1ð0Þþ h2k2

2m0

þ
X0

m

Xh jH1 mj ij j2
Elð0Þ�Emð0Þ : ðA:46Þ

Since Xj i is proportional to xf(r), we may verify that

m2
0

h2
Xh jHl mj ij j2 ¼ Xh jpx mj ij j2k2x þ Xh jpy mj i�� ��2k2y þ Xh jpz mj ij j2k2z :

Thus we may write

H11 ¼ E1 þ
X

j¼x;y;z

h2

2m0

þ h2

m2
0

X0 Xh jpj mj i�� ��2
El�Em

" #
k2j :

Due to symmetry at k¼ 0,

Xh jpy mj i�� ��2 ¼ Xh jpz mj ij j2:

Therefore,

H11 ¼ E1 þAk2x þBðk2y þ k2zÞ; ðA:47aÞ
where

A ¼ h2

2m0

þ h2

m0
2

X0

j

Xh jpx jj ij j2
El�Ej

; ðA:47bÞ

B ¼ h2

2m0

þ h2

m2
0

X0

j

Xh jpy jj i
�� ��2
El�Ej

: ðA:47cÞ
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The remaining matrix elements can be evaluated in a similar way to give the following

Hamiltonian matrix,

H ¼
E1 þAk2x þBðk2y þ k2zÞ Ckxky Ckxkz

Ckxky E1 þAk2y þBðk2x þ k2zÞ Ckykz

Ckxkz Ckykz E1 þAk2z þBðk2x þ k2yÞ

2
664

3
775

ðA:48Þ
where

C ¼ h2

m2
0

X0

j

Xh jpx jj i jh jpy Yj i þ Xh jpy jj i jh jpx Yj i
El�Ej

: ðA:49Þ

Let us nowconsider the effect of spin.As noted earlier inEq. (A.30) for j¼ 1/2, L:Sh i ¼ �h2,
and for j¼ 3/2, L:Sh i ¼ þ h2=2. Thus the states are split by an amount D proportional to

ð3=2Þh2, the doubly degenerate state with j¼ 3/2 moving up by D/3 and the single j¼ 1/2
state moving down by 2D/3. Since in the designation ls; jmj

�� �
, l¼ 1 and s¼ 1/2, we shall use

only the symbol jmj

�� �
to denote the states. As noted in this appendix, theHamiltonian for the

spin–orbit coupling is diagonalized if the states are chosen according to Eq. (A.32).

We shall treat the j¼ 3/2 states and j¼ 1/2 states separately, since the splitting energy is

large. The Hamiltonian matrix Hj j now becomes a 4� 4matrix for j¼ 3/2 states and a 2� 2

matrix for j¼ 1/2 states. We may evaluate the matrix elements for the 4� 4 matrix using

Eq. (A.47). Thus

H11 ¼ 3=2; 3=2h jH 3=2; 3=2j i ¼ ð1=2Þ ðXþ jYÞa Hj jðXþ jYÞah i
¼ ð1=2Þ Xah jH Xaj i þ Yah jH Yaj i þ j Xah jH Yaj i�j Yah jH Xaj i½ �

¼ E1 þ A

2
kx

2 þ ky
2

� 
þ B

2
kx

2 þ ky
2 þ 2kz

2
� 


¼ H44

ðA:50Þ

where the symbols 1, 2, 3, and 4 are used in the order in which the states are written in

Eq. (A.48). Similarly,

H12 ¼ 1

2
ffiffiffi
3

p ðXþ jYÞa Hj j ðXþ jYÞb�2Za½ �h i ¼ 1ffiffiffi
3

p ðHxz�jHyzÞ:

Instead of computing matrix elements nh jp mj i from first principles, one replaces them with

experimentally determined parameters called Luttinger parameters, defined as

g1 ¼ �2m0ðAþ 2BÞ=3h2; g2 ¼ �m0ðA�BÞ=3h2; g3 ¼ �m0C=3h
2: ðA:51Þ

In terms of Luttinger parameters,

H11 ¼ E1� h2k2z
2m0

ðg1�2g2Þ�
h2ðk2x þ k2yÞ

2m0

ðg1 þ g2Þ ðA:52Þ

Since in measurements the parameters conform to holes, and since the hole energy is

positive, wewriteH11 ¼ �Hhh and the zero energy reference isE1¼ 0. Repeating the above
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calculation for the other matrix elements, we obtain for the Luttinger Hamiltonian,

H ¼

Hhh �c �b 0

�c* Hlh 0 b

�b* 0 Hlh �c

0 b* �c* Hhh

2
6664

3
7775 ðA:53Þ

where

Hlh ¼ h2k2z
2m0

ðg1 þ 2g2Þ�
h2ðk2x þ k2yÞ

2m0

ðg1�g2Þ

c ¼
ffiffiffi
3

p
h2

2m0

g2ðk2x�k2yÞ�2jg3kxky
h i

b ¼
ffiffiffi
3

p
h2

m0

g3kzðkx�jkyÞ:

ðA:54Þ

In the vicinity of k¼ 0, onemay use the axial approximation,where g2 and g3 are replaced by
an effective Luttinger parameter,

�g ¼ ð1=2Þðg2 þ g3Þ ðA:55Þ
The function c is then expressed as

c ffi
ffiffiffi
3

p
h2�g

2m0

kx�jky
� 
2 ðA:56Þ

The dispersion relation for valence band holes may be written as

Ev ¼ � h2

2m0

Ak2 � B2k4 þC2ðk2xk2y þ k2xk
2
z þ k2yk

2
z

n o1=2
� �

¼ h2

2m0

�g1k
2 � 4g22k

4 þ 12ðg23�g22Þðk2xk2y þ k2xk
2
z þ k2yk

2
z

n o1=2
� � ðA:57Þ

Introducing the spherical polar coordinate system with the polar axis along the z-direction,

we obtain

Ev ¼ h2k2

2m0

A� ðB2 þC2=5Þ1=2
h i

:

This enables us to define effective masses for heavy and light holes as

mhh ¼ m0

A�ðB2 þC2=5Þ1=2
ðA:58aÞ

mlh ¼ m0

AþðB2 þC2=5Þ1=2
ðA:58bÞ

Example A.1

Using the values of c’s in Table A.1, the band edge effective masses for Ge are

mhh¼ 0.33m0 andmlh¼ 0.04m0.; the values for Si aremhh¼ 0.56m0 andmlh¼ 0.16m0.

For GaAs, the values are mhh¼ 0.059m0 and mlh¼ 0.08m0.
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A.3.4 Momentum Matrix Elements

It follows from Eq. (A.41) that the conduction band effective mass is expressed in terms

of P and is related to pcv, the momentum matrix element. The momentum matrix

element also appears in the calculation of the optical absorption coefficient or the

recombination rate in semiconductors. The conduction band edge state for a direct-gap

semiconductor has been found to have s-type symmetry and is denoted by Saj i and

�Sbj i. The valence band states are written in terms of angular momentum spin

representation in Eq. (A.32).

From symmetry, we find that only the matrix elements of the form

Xh jpx Sj i ¼ Yh jpy Sj i ¼ Zh jpz Sj i
are nonzero. The nonvanishing matrix elements are

�3=2h jpx �Sj i ¼ ð1= ffiffiffi
2

p Þ Xh jpx Sj i; �1=2h jpx 	Sj i ¼ ð1= ffiffiffi
6

p Þ Xh jpx Sj i
�3=2h jpx �Sj i ¼ ð2= ffiffiffi

6
p Þ Xh jpx Sj i

:

One may define a quantity:

Ep ¼ 2

m0

Xh jpx Sj ij j2 ¼ 2

m0

p2cv

The values of Ep for different semiconductors are remarkably close to �25 eV.

A.4 Quantum Wells

The subband structures for electrons and holes have been calculated in Chapter 3 by using

simple theory. However, for refined calculation, complete knowledge of the E–k dispersion
relation is needed in order to explain the experimental results. Herewe shall give the outline

of the theory for valence band states in a quantum well.

A.4.1 Subband Structures for Holes

The degenerate nature of the valence bands prompts us to employ the multiband effective

mass approximation. The Hamiltonian is written asX
n0

Hnn0 ðkÞþVðzÞdnn0½ �fn0
m ¼ Emf

n
m: ðA:59Þ

Table A.1 Band structure parameters for Ge, Si, and GaAs

me/m0 g1 g2 g3

Ge 1.58/0.082 13.25 4.20 5.56
Si 0.916/0.191 4.26 0.34 1.45
GaAs 0.067 6.8 2.1 2.9
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The complete wavefunction for the valence band hole in themth subband in the nth valence
band jmkðrÞ is written in terms of the envelope function fn

m as

jmkðrÞ ¼
X4
n¼1

fn
mðk; zÞ exp ðjk:rÞUnðrÞ: ðA:60Þ

We have assumed as before that the conduction band is decoupled from the valence bands

and only the two top valence bands are considered. We therefore consider four eigenstates:

1j i ¼ 3=2; 3=2j i; 2j i ¼ 3=2;�1=2j i; 3j i ¼ 3=2; 1=2j i; 4j i ¼ 3=2;�3=2j i.
The LuttingerHamiltonians for the hole states are given byEq. (A.53) and the coefficients

are given in Eq. (A.54).

For a rectangular QW,Hnn0 ðkÞ given in the matrix form described here should be replaced

byHnn0 ðk;�j@=@zÞ, where k is now the in-plane wave vector. The simple solution for k¼ 0

has been worked out in Chapter 3 (see Eq. (3.57)).

The in-plane effective masses for holes in different subbands have been calculated by

different authors using various degrees of approximations. We assume that the band gap as

well as the separation between the heavy-hole and split-off bands are large, so that the

Hamiltonian matrix is treated as a 4� 4 matrix as before. The eigenvalues are obtained by

solving the secular determinant of the 4� 4 matrix, and the expression is given by (A.57).

The upper and lower signs correspond, respectively, to heavy- and light-hole bands.

The character of the bands becomes increasinglymixed for higher values of k. The effective

mass in the xy plane depends, in general, on the direction, and the magnitude of the

anisotropy is determined by the difference in g2 and g3. Inmany cases the difference is small

and it is justified to take a spherical average. It can be shown that the average

k2xk
2
y þ k2yk

2
z þ k2zk

2
x

D E
ffi k4=5. Putting this in Eq. (A.57), we obtain

E ¼ h2

2m0

ð�g1 � 2�gÞk2 ðA:61Þ

where

�g2 ¼ ð2g22 þ 3g23Þ=5: ðA:62Þ
Each of the four eigenfunctions is of the form:

j ¼ A 3=2; 3=2j i þB 3=2;�1=2j i þC 3=2; 1=2j i þD 3=2;�3=2j i½ � exp ðj k:rÞ ðA:63Þ
The four eigenfunctions may be expressed as column matrices.

In the practical situation when the barrier height is finite, a parameter �g ¼ ðg2 þ g3Þ=2 is
introduced. The 4� 4 Hamiltonian matrix is transformed to a new matrix �H by using a

unitary matrix U such that [12]

�H ¼ UHU þ ¼ HU 0

0 HL

" #
; ðA:64Þ

where

HU ¼ Hhh R

R* Hhh

" #
and HL ¼ Hlh R

R* Hlh

" #

R ¼ cj j�j bj j
ðA:65Þ
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The upper and lower blocks are then decoupled.Wewrite now the upper- and lower-block

envelope functions as

jU
mkðrÞ ¼

X
v¼1;2

gðnÞm ðk; zÞ exp ðjk:rÞ nj i ðA:66aÞ

and

jL
mk ðrÞ ¼

X
v¼2;4

gðnÞm ðk; zÞ exp ðjk:rÞ nj i; ðA:66bÞ

where nj if g denotes the transformed basis set, and the envelope functions satisfy

X
n0¼1;2

HL
nn0 k:�j

@

@z

� �
þVðzÞdnn0

� �
gðn

0 þ 2Þ
m ðk; zÞ ¼ EL

mðkÞgðnþ 2Þ
m ðk; zÞ: ðA:67Þ

A.4.2 Subband Structures for Strained Ge on GeSiSn

The theoretical calculation by Chang and Chuang [13] is somewhat along the lines

shown, but includes the strain effect. The upper- and lower-block Hamiltonians are

expressed as

HU ¼
VvðzÞ�P�Q �R

_R
þ

VvðzÞ�PþQþDQ

" #
ðA:68aÞ

HL ¼ VvðzÞ�PþQþDQ �R

�R
þ

VvðzÞ�P�Q

" #
ðA:68bÞ

P ¼ � h2

2m0

@

@z
g1

@

@z
þ g1h

2k2t
2m0

þPe

Pe ¼ �avðexx þ eyy þ ezzÞ

Q ¼ h2

2m0

@

@z
g2

@

@z
þ g2h

2k2t
2m0

þQe

Qe ¼ � bv

2
exx þ eyy þ ezz
� 


DQ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DþQeð Þ2 þ 8Q2

e

q
� DþQeð Þ

� �

�R ¼
ffiffiffi
3

p
h2

2m0

g2 þ g3
2

� �
k2t�kt

@

@z
g3 þ g3

@

@z

� �� �

�R
þ ¼

ffiffiffi
3

p
h2

2m0

g2 þ g3
2

� �
k2t þ kt

@

@z
g3 þ g3

@

@z

� �� �
:

The symbols have their usual meanings.
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In a QW grown along the [100] plane, all four L valleys are equivalent. The Hamiltonian

for the [111] L valley may be written as

H
½111�
L kt; kz ¼ �j

@

@z

� �
� h2

2

@

@z

1

3ml

þ 2

3mt

� �
@

@z
�j

ffiffiffi
2

p
h2k1
6

�

@

@z

1

ml

� 1

mt

� �
þ 1

ml

� 1

mt

� �
@

@z
þ 2

3ml

þ 1

3mt

� �
h2k21
2

þ h2k22
2mt

þV ½111�ðzÞþV ½111�
e ðzÞ

2
6664

3
7775

ðA:69Þ
V

½111�
e ðzÞ ¼ aLðexx þ eyy þ ezzÞ

k1 ¼ 1ffiffiffi
2

p kx þ ky� 2p
a

� �

k2 ¼ 1ffiffiffi
2

p �kx þ ky
� 


A.4.3 Expression for Gain

In order to calculate the gain spectra, one needs to evaluate the squared momentum

matrix elements for transverse electric (TE) and transversemagnetic (TM) configurations.

We quote here the results for the TE momentum matrix element as given in Chang

and Chuang.

MU;TE
nm ðktÞ ¼ 3

2

ð1
�1

dzf*n;kt¼0ðzÞMbg
ð1Þ
m ðkt; zÞ

������
������
2

þ 1

2

ð1
�1

dzf*n;kt¼0ðzÞMbg
ð2Þ
m ðkt; zÞ

������
������
2

ML;TE
nm ðktÞ ¼ 3

2

ð1
�1

dzf*n;kt¼0ðzÞMbg
ð4Þ
m ðkt; zÞ

������
������
2

þ 1

2

ð1
�1

dzf*n;kt¼0ðzÞMbg
ð3Þ
m ðkt; zÞ

������
������
2

M2
b ¼ Sh jpx Xj ij j2

3
¼ m0

6
Ep:

ðA:70Þ
where M2

b is the bulk momentum matrix element squared and Ep is the corresponding

energy parameter. g
ð1Þ
m ðkt; zÞ and g

ð2Þ
m ðkt; zÞ are the eigencomponents of the upper

Hamiltonian HU; g
ð3Þ
m ðkt; zÞ and g

ð4Þ
m ðkt; zÞ are the eigencomponents of the lower

Hamiltonian HL, and f is the eigenfunction for the Gvalley. Similar equations may be

obtained for TM waves [13].
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