03569 % 935b60d30¢0l LEbgEMBOL MdOEOLOL Lobgerdfoxm MboggdloEgdo
bALEG ©d badYbIBOL,gGY3IL 93b0YOYIBIMS BOFILHIGO

3d036M™M s HBM
BOOTIOVOgo0

d9bogo¢o

d(M0)a éH3bJa3dM0b dmMM36JM0 baddBdbNdMm(M RBMED()
SHOTA RUSTAVELI NATIONAL SCIENCE FOUNDATION




P> 0 5M0L J03MMm S bbMLEMmdEmEgdo
P> Mo@)Md o9M0obL LYObEGMgLM

> ©o)™d o35)y30m9m



Au Si 5edsL0

06900 bob 300005900 0BMEEHMMHIGOO
)0M30L 53oMgdL ©9bL K )
)030L SOl 1530LvBSEO

J&©Mbgdol oo MorIbmds Q9bL 5&s69d9b AbmErMm© 356339 3060HMdJd30



bobg35Mm45d3)5M900

P dMbE ol 530Lv9350 A5EIMGOGOO0
BBJO05D 5BBYOOLOL (omMdMdS, LobsoErob
©oLB0390s, IFMMTS300)

P 330039900 M30L90900 Aoe0Sb
da»dbMd0sM95 J0doMEmO d93500895MdOL
dodsfrm

Crermanium Silicon Cralliim

Arsenide
300 K 2.02 x 10" 872 x 10° 203 x10°
400 K 1.38 x 10°° 452 x 10" 5.98 x 10°
500 K 1.91 x 10'® 216x 10M 7.98 x 10"!

600 K 1.18 x 10" 3.07 x 10" 2212 x 10"




b EGMJEH0gdol BM@sS

Effusion cells

| RHEED
Loreen

A
Walue
to Suffer Chamber - Ga
4 Heated .
Sulsstmon
ln
5
o
b2
P4, P2
lonisation
G Asd b3
. BHEED She, sh2
:_..illl'l T x

"."i-:'nr:l.ilatcr.r




3036 56 656 3gEMTo 0g4MEolibdgds 59EH0IMOL SO BMAs, 56v9 03 SGOL DBMBS BooE 8oL
* 960l go@otMgdo,

* 33039960 IMm3wgd900 (Bmsbmdds, godmbboggds...)

e 353b0@MM0 dMmzegbgdo (sabo@mMo 3mdgbE ool dm{jglitroyqds)



bobMULE)dEEgd0




SG™M390005b 3M0LEHSMd5dY

1. 5¢™do - 3350¢)ME0 md09JE0
2. 3m9399s - JodomEO dAS

3. 300LEIO - LEGHGMMIEHmEs LodgEHMOS



Nucleus

C4

w 5 g
s g

o —— =

35 Orhital




A TR0 IR G Covahan bohnd

] [, ]

B AHraddin Setanag

O Crmbnalest il Vrdak



3MoLG M0 BB dEvIMs




=== : I = e
= EAEE 46"“": il A

dgo6mo Lbgmmgdol 9bgemag@03vero

LAHONIGI(969639G03I0 b39JGHEO)

360LESgd0L 130198900 gobolsBP3xMIdS 9bgMAgEGH03ME0
UE®JEtom

959639303790 LEHMYIGHMES SGOL 0

969630900l 9MOMdoMds, HMIGeros
09L5dgg89e05 J0oMML 9egdEH©MHmbas

=—— allowed

forbidden
_— ——— =" allowed
Insulator Eﬂergy Ehergy
- y forbidden
Semiconductor g |EVE|5 bands
= allowed

one two three many
atom atoms atoms atoms



9¢994GHMMbgd0 3M0LESA0

» 530099350 9e94EHMMbgdol IMYEo

» »0mMJdol 019305350 Je9dEBHEOH™MbgdOL
dM@IYE0

» d0og®o 6ol Mo



9¢994GHMMbgd0 3M0LESA0




¢ mdgdoly 969M39¢039wo
U EM9dBHes [ o63mo9bL
QOL3MIOT (Fg3060w)

©™bggdls

dgs6 Lbgmengddo 0000mMg)emo SEMdmMo
©MbY 25605073695 BMbs. Dmbgdo
099035396 ~10%22 ombqls, Hdgngdog
009b>© SHEML 5G05b 9HbgMIb,
®m3 390d 905 MNY3939© Bs0M35MUs.

ek -|-u-4£

. Conduction band
]

RS

"Energy gap”
ki 2

. Valence band

Multitudes of atoms
in close proximity

969633%039wo Bmbgdo
3o9mygmgoos 9.§).

969633H039wo OghmgdOm.




999 BHMMbgd0  5Mm05b  Mogolmzergdo

@S 09mdosm  ©Ibol  gosE9bsdo
dmbsfoergmdols dowgdo. J390s
Bmbogsb FaRLLON] VTR bgdo
A9939MoGH Mol b  olboggdols (b
Lbg.) Lodoggdoo.

. Conductiion band

Energy gap”
. _L

Jodoe 83500. ¥ 9839653 IMgdDY

®0mg8ob y39es 9egddOmbo 0dymeggds 59
Multitudes of Eh\ Bebsdo.
in close proximity

Valence band

59 9e9d@m™bgdl 56  Fgmderosm ©gbos

2953906530  dmbsflogrgmdols dowgds,
0dodmd Mmd obobo 9 560D

0530L¥IR3w9d0.




E-egy

=z
m 2]
o-4d
n
mn
1)

d
m

Those becona

beide b Bizie mim
sc many IFE discrom@,
sepeEE, cikilds za ra
lerger foLre

B396 89230d¢005 3935935LM M38©gbs
SbEels 56056 9bgMy9E 030 mbggdo
9600098569003 5b.

- 2mL?

2

h°p°n’ 7=1.054x10*J-s  3¢nsb30b drydogs
2m|_2 m = 9.31x 10—31 kg U@Oj@)ﬁ)(“lﬁ()b dsbss
2 212
SUAE _ ' | — 360b@5mol Berds

2mL?




O35 30oLESMOL DMds d9930090M0S
bobmdgEMol ®ogodg 9596039303490

L399d@H®o bgds ol zMgd ™Mo, S¢mIol
doa356Mo0.

BobMmliE®vydEmigdl bdomo »Hmegdgb
B9 mgzbmm 5EHMAgOL”.




bobMULEMv)dEH9d0L (303900

> 3395¢vMm0 3900 (5396900) IbMmrm© 9M®0 26BMT0gds 9ol BobmagE®ols
020, bsMBIBO 2 o305 3M3900.

> 335600 09M™gd0 S Bsgbgdo — 2 456BMTods GO BobMIgEHEMOL
(00U, 9000 3,530mI3M3)0s

> 33956@MM0 9mEogdo — 153039 obBMI0gds BbMTGEHEOL Modobss.



Si
Si-Substrate

BobmLE 93 Mgdols dmoegzsmo
130053 gMmdS — 35000 30198900
99M300YOIE05s BMBoBY —
BB90s dsLsewols m30L98900L
3B EM00ol ©sdo3Hgd0mo
35653930



A6 043bgds bsbmBEMvydEvItgdo

Electron
& " - Conduction band
L

r

d

AIN GqN AIN

.ﬁiN ¥
T

AN

Quantum Dot 5 ;
AlIN / .
: —
J Ly . 1
2
3



MATERIAL SCIENCE ON NANOSCALE

TAMAR TCHELIDZE

FACULTY OF EXACT AND NATURAL SCIENCES



Content

Introduction

Chapter 1. Bulk Materials

Chapter 2. Quantum nano-structuresand their growth

Chapter 3. Chapter 3 Electronsin low Dimensional Structures

Chapter 4. Electronsin low Dimensional Structures of different shape and
material distribution

Chapter 5. Electronsin Quantum Semiconductor Structures: More Advanced
Systems and Methods

Chapter 6. Superlattices

Chapter 7. Phonons

Chapter 8. Optical Properties

Chapter 9. Localization and Quantum Transport

Chapter 10. Application

Appendix 1. Crystal structureand Materials

Appendix 2.

19

43

113

129

139

157

165

175

187



INTRODUCTION

Let’s begin our course with definition of nanoscience and nanotechnology that are main aspects of
nanomaterial science.
Nanoscience is the study of phenomena and manipulation of materials at atomic, molecular and
macromolecular scales, where properties differ significantly from those at a larger scale.
Bulk materias (object around us, crystals of micrometer size ) possess continuous physical properties.
But when particles assume nanoscale dimension, their quantities describing physical properties became
guantized. The same material (e.g., gold) at the nanoscale can have properties (electrical, optical, etc.)
which are very different form (even opposite to) the properties the material has at the macro-scale (bulk).
Nanotechnologies ar e the design, char acterization, production and application of structures, devices
and systems by controlling shape and size at nanometer scale.
In today’s scientific realm, the prefix “nano” describes physical lengths that are on the order of a billionth
of ameter (i.e. 10° m). The size rangeis set normally to be minimum 1nm to avoid single atoms or very
small groups of atoms being designated as nano object. The upper limit is normally 100 nm. A valid
guestion would be “why 100 nm, and not 150 nm?” The reason why the 1-100 nm range is approximate
is that the definition “nano” itself focuses on the effect that the dimension has on a certain material.
Nanoscience is not just the science of the small, but the science in which materials with small show new
physical phenomena, collectively called quantum effects, which are size-dependent and dramatically
differ from the properties of macro-scale materials. In other wordsin nanoscience considers the size
range where materials properties ar e sensitive to system size. This size range is different for different
materials. Bellow we will have more precise definition of lower and upper size limits of structures under
consideration.
Nanoscale materiads lie in a physical size regime between bulk, macroscale, materials and molecules of
atoms. Nanoscale physics, chemistry, biology, and engineering ask basic, yet unanswered question such
as how the optica and electrical properties of materials evolve from those of individual atoms or
molecules. Other questions being asked include the following:

How does one actually go about making a nanometer-sized objects and how does one make many

such identical objects?

How do their optical and electrical properties change with “dimensionality”?

How do charges move in such nanoscal e systems?

Do these materials possess hew and previoudly undiscovered properties?

Arethey useful ?



In the presented course, basics physical concepts, which help us so answer these questions, are

considered.

Nanostructures are classified according the number of reduced to nanometer dimensions:
1. Quantum well — with only one dimension of nanometer size. This actualy is a sheet with
nanometer thickness (Figure 1. a)) — so called 2 dimensional structures.
Quantum wires — with two dimensions of nanometer size. (Figure 2. b))
Quantum dots— all three dimensions are of nanometer size. (Figure 2. c))

Sio,

Si-Substrate

Figure 1. @) quantum well — electrons are confined in Si layers; b) quantum wires; ¢) quantum dots.

When we speak about hanometer size it is obvious that the whole samples cannot have such small sizes.
Nanometer size is an area where the electron (the main player in electronics) is confined. Bellow we will
see that when electron is confined in the area small areaits energy levels become discrete (atomic like).
The distance between the levels depends on size of the area where eectron is confined. Quantum
mechanica consideration (see below) tells us that the narrower localization area the higher is the kinetic
energy of electron. There exists the size for which electron has such high kinetic energy that it
cannot be localized. Actually this is a lower size limit. It varies from material to material. With
increasing the localization size the distance between the neighboring energy levels DE . The upper limit

is usually defined from the condition DE @KgT , i. e. energy level separation is order of thermal
energy.

In the next chapter we will discuss energetic structure of bulk materias, in order to understand how
properties of materials change with size reduction, as well as to learn what the mechanism of electron

localization in quantum nanostructures.



Chapter 1. Bulk Materials

The most of materials used in electronics are crystals. Therefore we will consider here properties
of crystaline materials. The main question to ask when studying crystalsis. how do properties
of solid differ from those of its constituent atoms or molecules? We will highlight here five
aspects that make the physics of the crystalline state interesting and different, namely

Crystal symmetry
Electronic bands
Vibronic bands

The density of states

Delocalized states and collective excitations.

1.1 Crystal symmetry

Crystals have long range tranglational order, and short range order characterized by point groups.
The point group symmetry refers to the group of symmetry operators that leaves the crystal
invariant. Examples of this include rotations about particular axes, reflections about planes and
inversion about points in the unit cell.

Let’s consider crystal structure. We introduce the concept of crystal lattice. Crystal lattice is a
set of equivalent points to which atoms or group of atoms (basis) are bound. The equivalence of
crystal lattice points are conditioned by the identity of atoms or groups of atoms, and their

symmetrical arrangement (Figure 1.1).

Figure 1.1 crystal structure = crustal structure + basis




From any point of crystal lattice with position vector I, it is possible to transfer any other

lattice point by means of lattice or translation vector defined as

n=na +na,+na,. (1.1)

In this expression n;,n,,n, are arbitrary integers, a;, a,, 8, are named as main translations.

Proceeding from the mentioned above, if r, is a lattice point, r =r,+n corresponds to

lattice point too.

a:, @ %vectors define parallelogram, which we call unit cell. Proceeding from the

definition of a, a,, a, vectors, by the repetition of unit cell to fill all space is possible

(Figure.1.2).

Figure 1.2 a) whole crystal; b) unit cell

Crystal point group symmetry is defined by relations between the length of a,, a,, a, vectors
and angles between them. a, a,, a, vectors identify the symmetry operators — rotations

inversions reflections, which leave crystal invariant. Consequently, these relations define



the crystal systems, which differ from each other by set of symmetry operators. There are

seven crystal systems and they are givenin Figure 1.3.

The link between the measurable properties and the point group symmetry of a crystal can be
made through Neumann’s principle. This states that:

Any macroscopic physical property must have at least the symmetry of the crystal
structure.

For example, if a crystal has four-fold rotational symmetry about a particular axis ( 4 rotations
around of this axis leave crystal invariant), then we must get the same results in any experiment

we might perform in four equivalent orientations.

N e

N — \___.|
Hexagonal Crthorhombic Monoclinic
=0 F Ty i P, Py dy Fa,
- = . Triclinie
e=flos g 3 n=f=y=r w—y——=F a,Fa.Fa,

oFEREY

Figure 1.3 Seven crystal systems



It is instructive to compare the properties of a crystal to those of the atoms from which it has
been formed. A gas of atoms has no trandational order. Therefore in crystal we expect new
properties connected to translational symmetry. Besides, the point group symmetry of acrystal is
lower than that of the individual atoms, which have the highest possible symmetry due to their
spherical invariance. We therefore expect to find other effects in the solid state that relate to the
lowering of the symmetry on going from free atoms to the particular point group of the crystal
class. The lifting of degeneracies by reduction of the symmetry is a well-known effect in atomic
physics. Free atoms are spherically symmetric and have no preferred directions. The symmetry
can be broken by applying an external magnetic or electric field which creates a preferred axis
along the field direction. This can lead the lifting of certain level degeneracies that are present in
the free atoms. The Zeeman effect, for example, describes the spitting of degenerate magnetic
levels when a magnetic field is applied. If the same atom is introduced into a crystal, it will find
itself in an environment with point group symmetry. This symmetry is lower than that of the free
atom, and therefore some level degeneracies can be lifted. Thispoint isillustrated in Fig 1.4. The
splitting is caused by the interaction of the orbitals of the atoms with the electric fields of the
crystalline environment. The character of splitting depends on the point group of a crystal. The

higher the symmetry of a point group the higher is the remaining degeneracy.

It should be mentioned that many important materials do not posses long range translation
symmetry. Glass is an obvious example. The energetic structure of these materials may be very
similar to those of their constituent atoms and molecules. Point group symmetry mainly defines
the peculiarities of electronic and vibronic spectrain such type of materials.

Long range order, which is characteristic for majority of solid materials, is revealed in that

system is invariant with respect to r® r+n transformation. This means that two points into
crystal separated be lattice vector are equivalent. Obviously, because of this new type of
symmetry new conserved measurable physical quantity  should appear. Energies and wave
functions of electrons become dependent on new additional quantum number. This new guantum

number is named as quasi momentum, by analogy to ordinary momentum, which is connected to

invariance with respect to r® r+dr infinitely small trandlation.



atom atom in
in crystal magnetic field

o« — o — ¢

crystal field degenerate Zeeman
effect magnetic effect
r— levels —
‘H“'“‘:- 1&5-'.':__ _-..F._ _________ —_

Figure 1.4 Splitting of the magnetic levels of free atom by the crystal field effect and external
magnetic field.

1.2 Energetic bands

The atoms in a solids are packed very close to each other, with the interatomic separation
approximately equal to the size of atoms. Hence the outer orbitals of the atoms overlap and
interact strongly with each other. This broadens the discrete levels of the free atoms into bands,
asillustrated in Fig.1.5



g N soid <—— e

atom

Figure 1.5 Schematic diagram of the
formation of electronic bandsin asolid from
the condensation of free atoms

>

Interatomic separation

How does ener gy levels depend on quas momentum (or wave vector)?

This can be estimated in different approximation.

1.3 Freeelectron model

Trandational symmetry causes delocalization of electronic states, which is connected to the fact that due
to the equivalence of crystal points probability of finding of electron in different lattice point isthe same.

However, in free elector model we did not account for microstructure of the crystal. Crystal can be treated
as potential well for electrons with infinitely high walls. In this case (bulk samples) allowed energy values

vary quasi-continuously, and are described by the formula:

— hz 2 2 2
Ek _%(kx +ky +kz ) (12)

10



If we introduce wavefunctions that satisfy periodic boundary conditions that is if we require

wavefunctions to be periodic in x, y, zwith period

y (x+L,y,2)=y (x,y+L,z)=y (xy,z+L)=y (xV,2) (13)
We obtain
PN . o
K,k ,k =0;—;£—.....
xo Ky K =02 (1.4)

Y. (r)=e". (15)
Thisis atraveling wave caring momentum B = hk.

1.4 Nearly free electron model

The band structure of a crystal can often be explained by the nearly free electron model for
which the band electrons are treated as perturbed only weakly by the periodic potential of theion
cores. Let’s see what introduction of periodic potential will give.

We consider the simplest case — one dimensiona chain of atoms. Interatomic separation in this

chainisa i.e wehaveone-dimensional crystal lattice with lattice constant a ( Fig.1.6 a).
Introducing periodic potential in the model changes the picture in the way that the wavefunctions
a k=xp/a are not traveling waves exp(ipx/a) or exp(-ipx/a)of free electrons. At these

special values of k the wavefunctions are made up of equal parts of waves traveling to the right
and left. The wave traveling to the one direction interferes with the wave reflected from the

neighboring crystal point.

11
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AR SN o an e

Figure.1.6 @) Variation of potential energy of a electron in the field of theion cores of alinear lattice;
b) Distribution of probability density in the lattice.

For this special value of wave vector constructive interference takes place, because the path
difference is an integra number of wavelengths. That is traveling waves form two standing
waves.

y (+) = €2 402 = 2c0sPX
a
_ . (1.6)
y (_) — e|px/a _ e—lpx/a - 2| Slnﬂ
a

These two standing waves pile up electrons at different regions, and therefore they have different values
of the potential energy in the field of the ions of the lattice. This is the origin of the energy gap. The

2
probability density ' of aparticleis 'y (X)‘ For a pure traveling wave probability density is equal to 1.

The charge density is not constant for linear combinations of plane waves. For which we have

12



r(+)=y (+)|2 ~ cosz%

(1.7)
r(-)=y () ~sn* P>

The first of these functions piles up electrons on the positive ions, where the potential energy is lowest,

while the second one concentrates electrons away from the potentia energy minima. Because of

different localization of ¥ (*) and ¥ (-) states, corresponding energies are different. atk=zp/a

energy gap usually denoted as E, occurs.

We see that using nearly free electron model instead of free electron models explains appearance of

energy gap in dispersion relation. (Figure 1.7)

(a) {b)

Figure.1.7 @) Plot of energy versus wavevector for afree electron; b) Plot of energy versus
wavevector for a electron in a monoatomic chain.

13



1.5 k-P method

k-P model is one of the most popular in studying bulk and nano-structured semiconductor
materials and has been used widely during past decades. This method enables one to find wave
functions and energies for electron in periodic structure for any value of wavevector using

known energies and wave function at particular point ko.

For the electron in a periodic potential
v(r)=v(r+n) (1.8)

where n is the lattice vector defined by (1.1), the electron wave function satisfies the

Schrodinger equation

é n? - U, ~ N

& ——D+V(N)gY (1) = EK)Y (7) (19)
é 2m v

The Hamiltonian is invariant under translation by the lattice vector r® r+n.If y (F) describes an

electron moving in the crystal, y (F + ﬁ) will also be asolution to (1.9). Thus'y (F + ﬁ)win differ

fromy (F) at most by a constant, which must have a unity magnitude; otherwise, the wave

function may grow to infinity if repeat the trandation infinitely. The general solution of the

above equation is given by

Y o (r) =€, (r) (1.10)

Where
Uy (1) = Uy (R+1) (1.12)

14



isaperiodic function. Thisresult is the Bloch theorem. The energy is given by

E=E (R) (112)

Here n refersto the band and k the wave vector of the electron.

The k-P method is a useful technique for analyzing the band structure near a particular point ko,

especially when it is near an extremum of the band structure. Here we consider that the

extremum occurs at the zone center where ko =0.

Consider the general Schrdodinger equation for an electron wave function in the n-th band

e SNV S
g 5 DHVNGY () =E(K)Y (1) . (1.13)
é 2m G

If substitute (1.10) in thisformula

e n v u ikr =\ — AP -
& 5 DV e Uy (1) = E,(K)e uy (1) (1.14)
é 0

we obtain equation in terms of u,, (r)

é A2 U 21,2 =

= U S - hk0 -
9p_+v(r)+_(kp)g (=B, (R)- 220, (1) (1.15)
8 2m m é 2m g

The above equation can be expanded near a particular point Ko of interest in the band

structure. When ko =0 the above equation is expanded near E, (0),

15



o+ (k) ) =E,(0- h; U () (116

Where
~2

_ b =
Hy=- —+V

0 om (r)

16, e 710 & N6 (1.17)

K xp K, |h +k h— +k ih—=

P= 2 X g 8 8112@

Our god is to find u,, (F) functions and corresponding energies, which enable one to find

dispersion relation for definite zone (for definite n’) For k=0 (1.16) equation has the form
H o, (1) = E,(0)u,, (1) (1.18)

Let’s assume that we know the solution of (1.18). If interaction between the zones is small
(distance between them is large) the solution of (1.16) can be found in the frame of perturbation

theory. In this case perturbation is equal to

(1.19)

Using standard procedure of perturbation theory, close to k= 0, E, and corresponding u,, are

written as

— 2

A R g [(Unlkp un-o>\
Ex=Eot o +Fn1n' EE. (1.20)
Upye = Ung + 2 a (o kPl o) (1.21)

mn;L n' Eno = En'O

16



As (u,|kp|u,,) matrix elements are equal to 0. In the expression for energy there are no linear

terms of k.
Formula (1. 20) can be rewritten as

h’k?

Ex=Eo*
nk no om*

(1.22)

where

‘2

1 1 s 2 ) un Rp un'
— =G+ nd (Uho o (1.23)
m* m& mk’Hyn E.- E.o

This expression can be treated as so called inverse effective mass of electronin crystal. It indicates that in

crystal, electron effective mass is different from mass of free electron. The reason is mixing the states of
different because of mixing of states of different zones by means of Rp term. AS can be seen the effect

depends on

(Uno|KP|Uyo) matrix element
E, - E,, differences. The mixing with the zones energy of which islessthan E,, decrease
the effective mass, while mixing with the states with energy higher than E_ increase the

effective mass, or may make it even negative.

Let’s consider conductive band. The conductive band states mainly interact with the valence band states.

From the symmetry considerations valence band states, which are usually p-type (generated from 1=1

atomic states) and are denoted as | X> , |Y> and | Z) . We denote the conductive band state as | S> (they

generate mainly from /=0 atomic orbitals). From the symmetry considerations we can estimate matrix

elements. Only those given bellow are not equal to zero.

(Slp./X)=(Slp, V) =(s|p.|2) P . 20

17



Using (1.24) from (1.23) we obtain

(4.14)

Here E, is so caled band gap - the difference between the conductive and highest valence band at k=0

we see that in this approximation effective mass does not depend on wave vector — we have
parabolic dispersion relation. Generally an effective mass is wave vector dependent and
dispersion relation is quite complicated. In Figure 1.8 the band structure of Siisgiven. I, A, A, X,

L denote the points of different symmetry in k space. We can see that close to I' point (R =0) dispersion
relation is parabolic indeed. However, away from this point, there is deviation from the parabolic shape.

Figure 1.8 E=E(K) relationsfor Si.

Finally, it should be mentioned that the values of quasi wave vector equal to + P limit the area called the
a

first Brillouin zone. In thisregion all un-equivalent values of wave vector are places.

18



Chapter 2. Quantum Nano-structures, Their Growth and Structural

Characterization

In the late 1960s new electronic and optica phenomena was founded on a suggestion by Leo
Esaki and Raphiel Tsu, than working at the IBM Research Laboratories. They proposed that
structures composed of layered regions of semiconductors with different band gaps would have a
spatialy varying potential energy surface that would confine carriers to the narrower band-gap
materia. If there were few enough adjacent layers of this material, then the carriers could be
confined within regions comparable to their de Broglie wavelength — the natural length scale that
governs their quantum mechanical behavior. For this reason, these narrow regions are now called
“quantum wells”. Electrons and holes in quantum wells were predicted to exhibit remarkable
optical and transport properties that could be controlled by varying the width of the well and
their barriers. Figure 2.1 presents AlGaAs/GaAs quantum well and its energetic diagram.

@ Al
Ga

AlGaAs | GaAs | AlGaAs

Figure 2.1 AlIGaAs/GaAs quantum well

19



At the time that Esaki and Tsu made their proposal, the available technology could not produce
materials of sufficient quality to verify the predicted effects. Nowadays Epitaxial growth
techniques gives us the possibility to obtain layered structures, which have already gained
practical application. Advances in epitaxial growth techniques have played a pivota role in the
realization of ever more ambitiously designed quantum heterostructures. In such structures the
confinement of electron motion in one, two or three dimensions occurs, and the effective
reduction of dimensionality takes place. In this chapter we present epitaxial growth techniques,
epitaxial growth modes, as well as experimental methodologies that have been developed to

achieve the required control over composition, doping, and interface characterization.

2.1 Molecilar Beam Epitaxy

Molecular beam epitaxy (MBE) isthe simplest and one of the widely used way of fabricating
semiconductor heterostructures. MBE is essentially two-step process carried out in an ultra-high
vacuum environment. In the first step, atoms or simple homoatomic molecules which are
constituent of the growing material (e.g. atomic Ga and either As2 for GaAs) are evaporated
from solid sources and directed toward a heated substrate, which is typically afew centimeter in
size (Figure 2.2). The particles within these beams neither react nor collide with one another, i.e.
the deposition onto the deposition onto the substrate is ballistic and the particles are said to
undergo molecular flow — hence the name molecul ar-beam epitaxy. The substrate is often rotated
for more uniform deposition rates across the substrate.

The second step of MBE is the migration of the deposited species on the surface prior to their
incorporation into the growing material. This determines the profile, or morphology, of the film
and its effectiveness depends on a number of factors, including the deposition rates of the
constituent species, the surface temperature, the surface material, and its crystallographic
orientation. The dependence of the morphology on the deposition rate of new material means
that MBE (as well as other epitaxial growth techniques) are inherently nonequilibrium, or
driven, process. Growth near equilibrium is governed almost exclusively by thermodynamics.

For epitaxial growth, thermodynamics still provides the overal driving force for the
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morphological evolution of the surface, but the extent to which equilibrium is attained even

locally is mediated by kinetics, i. e. the rates of processes that determine how a system evolves.
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Fig. 2.2 The arrangement of the substrate, the reflection high-energy electron diffraction
(see below) measurement apparatus, consisting of an electron gun and collector screen.

A maor strength of MBE is that the ultra-high vacuum environment enables the application of in
situ surface analytical techniques to characterize the evolution of the growing material at various

level of resolution — from microns to the arrangements of atoms. These techniques will be
discussed below.
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2.2 Vapour-phase Epitaxy

An aternative to deposition by molecular beams is hydrodynamic transport of materia to the
substrate from gas source. In the scenario, which is called vapour-phase epitaxy (VPE), the
constituent of the growing surface are delivered within heteroatomic molecules called
precursors. For group IV group materials, the precursors are hydrides, chlorides, or chloro-
hydrides. The growth of I11-V materials uses precursors for the group species, which contain

carbon, and the V elements are supplied as hydrides.

The pressures inside a vapour-phase reactor can vary from 107 torr up to atmospheric, so the
flow of the gas is viscous and the chemicals reach the substrate by diffusion through a boundary
layer. Thus, the delivery of material to the growing film encompasses gas phase and surface
chemical reactions, as well as mass transport within fluid as it flows through the reactor, the

latter being highly dependent on the system pressure and reactor design.

The use of gas sources has severa attractive features for the epitaxial growth of semiconductor
heterostructures. They can be used at room temperature, thus causing less contamination than
high-temperature sources, and with a very simple reactor design, can give a more uniform flux
than of a molecular beam, so that the surface does not need to be rotated. An operational
advantage over MBE is that, because there is no depletion, the growth chamber does not need to
be opened and exposed to air to replenish the source materia. An important practical

disadvantage of vapour-phase is that the gas sources can be highly-toxic.

2.3 Epitaxial growth Modes

As mentioned for obtaining nanostructures two different materials with different band gap are
needed. Numerous experiments have revealed that, for small amounts of one material deposited
onto the surface of another materia (similar or different), the epitaxial growth is one of the three

distinct types:
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Frank-van Merve morphology, with flat single crystal films consisting of successive
complete layers;

Volmer-Weber morphology, with three-dimensional (3D) islands that leave part of the
substrate exposed;

Stranski-Krastanov morphology, with 3D islands atop athin flat “wetting” film that

completely covers the substrate. These morphologies areillustrated in Figure 2.3

(a)

Figure2.3 (a) - Frank-van der Merve, (b) - Volmer-Weber, (c) Stransky-Krastanov —
morphol ogies.

For lattice-matched systems, the Frank-van der Merve and Volmer-Weber morphologies can be

understood from thermodynamic wetting arguments based on interfacial free energies. We

denote the free energy of the epilayer/vacuum interface by  g,, that of the epilayer/substrate
interface byg,, and that of the substrate/'vacuum interface by g,, the Frank-van der Merve

growth modeisfavored if

ge +gi < gs (21)
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In this case, as the epilayers are formed, the free energy decreases initially before attaining a
steady-state value for thicker films. Alternatively, if

g.+0 >0, (2.2)

then Volmer-Weber growth is favooured. Here, the free energy increases if epilayers are formd
on the substrate, rendering a uniform layer thermodynamically unstable against a break-up into

regions where substrate is covered and those it is uncovered.

The Stanski-Krastanov morphology is observed in systems where there is appreciable lattice
mismatch between the epilayer and the substrate. This growth mode is thought to be related to
the accommodation of the resulting misfit strain, which changes the balance between the
surface and interfacial free energies as the strain energy increases with the film thickness. Thus,
although the growth of “wetting” layers is favored initially, the build-up of strain energy
eventualy makes subsequent layer growth unfavorable. Beyond this point, the deposition of
additional material leads to the appearance of 3D islands within which atrain is relaxed through
the formation of misfit dislocations. However, there is another scenario within the Stanski-
Krastanov morphology: the formation of islands without dislocations — called coherent islands
(Fig. 2.4) — atop one or more wetting layers. This phenomenon, which has been observed for a
number of systems, has many applications.

18 nm
AL LLE

Figure 2.4 Coherently strained islands atop wetting layer.
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Figure 2.5 presents the schematic dependence of the film chemical potentia on the film

thickness in number of minolayers for the three modes of growth: Volmer-Weber (VW),
Stransky-Krastanov (SK), and Frank-van der Merwe (FM).
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Figure 2.5 dependence of the film chemical potential on the film thickness for the three
growth modes. The dashed line gives the chemical potentia of the unstable wetting layer.

2.4 Growth Kinetics

The fabrication of heterostructures requires growing crystalline materials on the surface of
different materials, a process which is known as heteroepitaxy. But a useful starting point for
understanding heteroepitaxial phenomena is homoepitaxy — the growth of a materia on a
substrate of the same material. Many atomistic processes that occur during heteroepitaxy have

direct analogues in homoepitaxy. Many atomistic processes that occur during heteroepitaxy
have direct analogues in homoepitaxy.
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We develop two most analytic descriptions of epitaxial kinetics. the Burton-Cabrera-Frank
(BCF) theory and homogeneous rate equations.

Burton-Cabrera-Frank theory

The BCF theory describes growth on avicina surface of a monoatomic crystal in terms of the
deposition and migration of single adatoms. The central quantity is, therefore, the adatom

concentration c(x,t) at position x and time t. The processes which causes this quantity to

change aret

Diffusion of adatoms, which have diffusion constant D, and flux J of adatoms onto the
surface. From the molecular beam. We will assume that the desorption of the atoms from the
surface can be neglected, but this can be readily included in the theory if required. In the

simplest form of the BCF theory, the equation determining  c(x,t) on a terrace is a one-

dimensional diffusion equation with a source term:

2
%:D%u (2.3)

This equation is supplemented by boundary conditions at the step edges which bound the

terrace

c@o,t)=0, C(L,t)=0 (2.9
where L is the terrace length. These boundary conditions stipulates that adatoms are absorbed
at step and immediately incorporated into the growing crystal with no possibility of subsequent

detachment. We will focus on the steady-state solution of equation (2.3). With (2.4) boundary

condition (2.4), we obtain

C(x)=(J/2D)x(L - X) (2.5)
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which is a parabola with its maximum at the centre of the terrace and which vanishes at the
terrace edge, according to boundary condition. The scale of the adatom concentration is set by
the growth conditions (substrate temperature and flux) through theratio J/D . This quantity isa
measure of the competition between the deposition flux, which drives the surface away from
equilibrium and increases the adatom density, and the relaxation of the surface toward
equilibrium through adatom diffusion, which decreases the adatom density. Since the theory
negl ects interactions between adaatoms, the growth conditions must be chosen to ensure that the

adatom concentration is maintained low enough to render their interactions unimportant. Thus
th BCF theory is vaid only for relatively small values of J/D, i.e. high temperatures and/or

low fluxes, where growth is expected to occur by so called step flow.

Homogenous rate equations

With increasing temperature or decreasing deposition rate, growth by the nucleation,
aggregation and coalescence on the terraces of substrate becomes increasingly likely and the
BCF picture is no longer appropriate. One way of providing a theoretical description of this
regime within an analytical framework that complements the BCF theory is with equations of

motion for the densities of adatoms and islands. These are called rate equations.

Here we consider the simplest rate equation of growth, where adatoms are only mobile surface
species and the nucleation and growth of islands proceeds by the irreversible attachments of

adatoms, i.e. once an adatom attaches to an island or another adatom, subsequent detachment of

that adatom cannot occur. We will signify the density of surface atons by n, (t) and the density

of s-atom idands by ng (t) where S>1. The rate equation for n;is

C(lj_r':l =J- 2Ds,n?- Dnd s.n, (2.6)
s=2
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In common with most formulations of rate equations, the adatom and island densities are taken
to be spatially homogeneous. In particular, there is no diffusion term DN’n,, despite the fact

that adatoms are mobile. This description is most suitable for singular surfaces, where there are
no pre-existing steps to break the trandlationa symmetry of the system and induce a spatial
dependence in the adatom and island densities.

The first term on the right-hand side of equation (2.6) is the deposition of atoms onto thr
substrate, which increases the adatom density, and so has a positive sign. The next term
describes the nucleation of a two-atom island by the irreversible attachment of two migrating
adatoms. This term decreases the number of adatoms (by two) and thus has a negative sign.
The rate for this process is proportional to the square of the adatom density because two
adatoms are required to form atwo-atom island, and D, the adatom diffusion constant, because
these adatoms are mobile. The third term accounts for the depletion rate of adatoms due to their
capture by islands. This term is proportional to the product of the adatom and total island

densities and must also have a negative sign. The quantitiess, , called capture cross section,

accounts for the diffusion flow of atoms into the islands.

The rate equation for the density of s-atom islands ng(t) is

ddrls =Dns.,- Dns n, (2.7)

The first term on the right-hand side of this equation is the creation rate of s-atom islands due to
the capture of adatoms by (s-1)-atom islands. Similarly, the second term is the depletion rate of
s-atom islands caused by their capture of adatoms to become (s+1)-atom islands. There is an
equation of this form for every island comprised of two or more atoms, so we have an infinite
set of coupled ordinary differential equations. However, since the density of large islands

decreases with their size, in practice the hierarchy in (2.7) is truncated to obtain solution for n,
and the remaining ngto any required accuracy. Notice that in writing (2.7) we have omitted any

direct interactions between islands. This restricts us to a regime where there is no appreciable

coalescence of these islands.
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To illustrate the calculus of rate equation, we consider a limiting case where all of the capture

numbers are set equal to unity. Then, by introducing the total island density, N = é Ng,

S>1
using this definition in (2.6), and summing the equation in (2.7) over s, we obtain a closed set of

two equationsfor n, and N :

dn, 2

—1=1- 2Rn*- RN

aq Rn”- Ry

AN _ g2 (2.8)
dq Ry

where R=D/ J and we have used the relation between the coverage and the flux in the absence
of desorption, q =Jt, to replace the time by the coverage as the independent variable. This
replacement is made because the coverage is the more “natural” variable, since it can be

measured directly with greater accuracy that the deposition time and the flux.

Equations (2.8) are straightforward to integrate numerically and their silution are shown in Fig.
2.6. we will focus here on the initial and longtime behavior of the adatom and islands densities,

where analytical solutions are easily obtained.

Figure 2.6 The dimensionless adatom and island densities, denoted by nand N , 88
afunction of dimensionlesstime, t , obtained by integrating the rare equation (2.8)
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At short times (q < 1),

n~q, N~Ry® (2.9)

The density of adatoms initially shows a linear increase with coverage (or time), which is due
entirely to the deposition flux. The islands are somewhat slower in their early development,
showing a cubic time-dependence, because the adatom density is too low for there to be
appreciable island nucleation. Equations (2.8) show that N continues to increase for al later

times, athough n increases initialy, it eventually begins to decrease (Fig. 2.6). This continues

until we reach aregime wheren, < N and dn,/dg » O . In this regime, we obtain

-1/3p-2/3
-6 7R (2.10)
N - q1/3R- 1/3

Notice that, just as in equation (2.5), the ratio D/J is the controlling parameter for

guantities which characterize the surface morphology. In particular, the equation for N
indicates that increasing the temperature (i.e. decreasing D) and/or decreasing the flux J

causes the island density to decrease, resulting in fewer, but larger islands.

2.4 Mechanism of Heteroepitaxial Growth

The morphology that results during the growth of a material on the substrate of a different
material is central to the fabrication of all quantum heterostructures. This morphology is
determined by the surface and interface energies of the materials, the manner in which strain is
accommodated if the materials have different lattice constants, and any effects of alloying and
segregation. Controlling the morphology during heteroepitaxy involves understanding the
atomistic mechanisms by which these factors assert themsel ves.
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GaAs, AlAs and their aloys are the simplest semiconductor heteroepiraxial systems because of
the very small lattice mismatch between AlAs and GaAs and similar values of thermal
expansion coefficients. But this situation is not typical. The fabrication of heterostructures from
other combination of materials with potentially attractive properties requires identifying (or

even utilizing) the morphological and electronic consequences of any lattice mismatch.

There are abundant data available for several heteroepitaxial systems, but there is no theoretical
approach which captures the essence of morphological evolution if there is lattice misfit. There
are two reasons for this. The kinetics of atomic processes on the surface of strained systems are
not determined simply by local environment of the atoms, as in the case of homoepitaxy, but
may incorporate non-local information, such as the height of aterrace above theinitial substrate
or the size and shape of 2D and 3D islands. Then there is the issue of lattice relaxation and any
resulting defect formation. The theoretical description of such effects at heterogenous interfaces
has relied largely on the minimization of energy functional in order to determine equilibrium

atomic positions near the interface as a function of the lattice mismatch.

The Frenkel-Kontorova model has been used to address several general aspects of the
accommodation of misfit srtain and the formation of dislocations in heteroepitaxial system

within asimply analytic framework.

Frenkel-K ontorova model

In the Frenkel-Kontorova model, the equilibriumpositions of atoms within the growing layer
result form the competition between the preferred interatomic separation of these atoms, which
interact through harmonic springs, and the periodicity imposed by the rigid potentia of the
substrate. This potentia induces elastic strain in the epilayer and can result in the formation of
misfit dislocations.

Many of the characteristic features of strained islands can be captures by the simplest calculation
of a one-dimensional monolayer island consisting of N adjacent atoms. The harmonic springs
connecting these atoms have a natural length, b the lattice constant of the deposited material,
and aforce constant k. The interaction between the atoms within the island and the substrate is
described by a rigid sinusoidal potential which has periodicitya, the lattice constant of the
substrate:

31



V(x) = %W[l- 2c08(2p X/ a)] 2.11)

The ground state of this system is determined by calculation the energy as a function of the
atomic positions within the island and then minimizing this expression with respect to these
positions. We denote this distances from the origin to the nth and (n+1)th atoms by X, =na+x,
and X, =(n+Da+x,, where x, and x, are the displacements of the atoms from the

bottoms of their substrate potential troughs (Fig. 2.7).

|
* Ko+ *|

Figure 2.7 Layout of atoms in epitaxia layer with respect of their equilibrium position. Curve shows
periodic potential.

The distance DX, between the (n+1)th and nth atoms can be written as

DX, =X, - X,=(nh+Da+x,-na- x, =X,- X +a (2.12)

The strain e(n) of the bond between these atomsis
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e(n):DXn_b:Xm—l X, ta- b= a?(ml Xn+1_E9:

a a apyp (2.13)

=a(X,, - x,- f), x

n+l —

where f isthe misfit between the epilayer and the substrate. The energy of the N-atom idand is

now written as the sum of the potential energy (2.11) and the strain energy due to the changes in
the length of the springsin (2.13):

E-I 2a K- X, - F)2+= a[l cos(2px, )] (2.14)

aEk oﬂ
W n=1 n=1 Z/Vg

l, is the ratio of the interaction energy between the atoms in the epilayer to that between the

epilayer and the substrate.

The partia derivatives of E potential energy with respect to the variable X, give the force acting
on the nth atom. In the equilibrium condition E/fix,, =0. By minimizing (2.14) expression the

recurrent equations are obtained:

Xo- f :%sianx0

0

X

n+l

- X, - X, 4 :%sianxn (2.15)

0

Xno1~ Xy.o- T :%sianxN_l

0
These equations can be solved numerically, However it is possible to solve them analyticaly if

make definite assumptions. The obtained results gives us the possibility to calculate the energy

of epitaxial layer.
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Figure 2.8 shows the equilibrium configuration for idands of different size calculated with the
parameters f =0.1 and |, =10, i.e. for atoms in the epilayer that are much strongly bonded to

each other than th the substrate and which have a 10 % larger lattice constant than the substrate.
Severa general issues can be discusses with reference to thisfigure

Atoms near the centre of the idland adopt positions close to the minimum of the nearest
potential energy trough. Atoms further from the centre of the isand are correspondingly
further away from their nearest minima. Thus, strain relaxation occurs predominantly at the
edges of idands.

Asthe number of atomsin an idand increases, the strain energy within the idand builds up
and the energy difference between a coherent idand and an idand with a single disocation
diminishes until, at some critical size, adisocation isformed.

With the parameters we have chosen, an idand with 12 or more atoms minimizes its energy
by forming a didlocation, which islocated in the centre of theisland. Since strain relaxation
islargest at idand edges, we would expect the dislocation to form at the iland edge and to
migrate toward the centre, with the interface between the epilayer and the substrate

providing the one-dimensional slip “plane”
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Figure 2.8 Equilibrium position of atoms in a one-dimensional epilayer within the Frenkel-Kontorova
model. Islands are shown with (a) 4 atoms, (b) 8 atoms, (c) 12 atoms, and (d) 16 atoms. The isands in
(@), (b) and (c) are coherent, but theisland in (d) has adid ocation located in its centre.



Figure 2.9 demonstrate formation of dislocation in heterostructure. One can see that number of

atomic layersin epilayersisless than that in substrate by one.
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Figure 2.9 Formation of didocation in heterostructure. Curve shows the periodic
potentid which minima coincides to the equilibrium position of atoms.

2.5 Characterization Techniques

The advances in nanoscience and nanotechnology are uniquely connected to the development of
characterization techniques. The techniques we are discussing here are: reflection high-energy
electron diffraction (RHEED), transmission electron microscopy (TEM), scanning electron
microscopy (SEM), Scanning Tunneling Microscopy (STM), and atomic force microscopy
(AFM).

Reflection High-energy Electron Diffraction

Surface electron diffraction is a standard method for examining the structure of surface both in
equilibrium and in the presence of a deposition flux, and thus represents one of the techniques used
during epitaxial growth. RHEED measurement is carried out by directing a high-energy (10-
20keV) beam of electrons a a glancing angle (0.5-3°%) toward the surface (Fig.2.2). The eectrons
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penetrate a few layers into the surface and those which emerge are recorded on a phosphorescent
screen. RHEED has three main advantages: (i) it is a simple measurement to set up, requiring only
an dectron gun and a recording screen, (ii) it is geometrically compatible with the molecular
beams (during MBE), and so does not interfere with the growth process, and thus, (iii) it can be

carried out in situ under normal growth conditions.

RHEED provides several type of information about a surface, including its crystallographic
symmetry (from the symmetry of the diffraction pattern), the extent of long-range order (from the
sharpness of the pattern), and whether growth is proceeding in a2D or a 3D mode. One of the most
common applications of RHEED is based on measuring the intensity of the specular beam (equal
incident and reflected angles). A typical example, taken during the growth of GaAs, is shown in
Fig. 2.10. Most apparent in this trace are the oscillations and their decaying envelope. The
oscillations are due to the repeated formation of bi-atomic Ga-As layers and provided the first
direct evidence of layer-by-layer growth in this system. The decaying envelope results from the
fact that this layer-by-layer growth is imperfect, i. e. subsequent layers began to form before the

preceding layers are compl ete.

Specular Intensity

0 5 10 15 20 25
Time (s)

Figure 2.10 Specular RHEED intensity oscillations from a singular GaAs. The broken lines
indicate the points where the specular intensity is a local maximum; these correspond to the
deposition of additional Ga-As bilayers
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The period of the oscillations in Fig. 2.10 indicates that the time required to form a complete bi-
layer is of the order of seconds. Since the molecular beams can be turned on and off mechanically
with a shutter, the amount of materia deposited can be controlled to within a fraction of a layer.
Thus, a prescribed number of layers of one material (e.g. GaAs) can be deposited onto a surface,
followed by a prescribed number of layers of a second material (e.g. AIAS). This process can be
repeated to obtain multi-layer structure. The eectronic properties of such structures can be
engineered by varying the number of deposited layers of different materials.

Transmission Electron Microscopy

Transmission electron microscopy is analogous to conventiona light microscopy in that one
obtains pictures or micrographs of a specimen of interest. However, instead of photons, electrons

are used to construct the images.

In the TEM experiment, a thin or diluted sample is bombarded under high vacuum with a focused
electron beam. Electromagnetic lenses steer the beam and focus it onto the specimen. Transmitted
electrons then form contrast patterns that created images of the sample. In this regard, thicker
regions of the specimen occlude more of the incident beam than thinner regions, causing intensity
variations that help define the image. 1t should be mentioned, that absorption is generaly small in
these experiments, since samples are inherently thin. As a consequence, most micrographs are
actually constricted from scattered electrons that arise from interactions with the material. This
scattering can be either elastic or inglastic and, in many cases, it is elastically scattered electrons
that are used to construct the micrographs. The transmitted el ectron beam image is then magnified
onto a detector or phosphorescent screen to yield a picture of the specimen. Fig.2.11 shows TEM
image of silver nanoparticles.

A key feature of the TEM is its inherently high degree of spatial resolution. Specificaly, the
classical diffraction limit of electromagnetic waves is roughly half their wavelength. As a

consequence, a beam of electrons resolves much finer things than photons.

Toillustrate, assume that the TEM has an accelerating voltage V .
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Figure 2.11 TEM image of silver nanoparticles randomly assembled on agrid.

Electrons extracted from the filament or other sources then acquire a kinetic energy E =€V .

Therefore for momentum and de Broglie wavelength we obtain:

I
N
3
<

p | = — (2.16)

where m, is electron mass, e - its charge, h - Planck constant. The expression for the de

Broglie wavelength can be written a more convenient way substituting the values of constants:

| (nm) _ 1.225(nm) (2.17)
«/V (volt)
Next, the diffraction limit is defined as
| = 0.612I (2.18)
NA
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which is the length below which we cannot distinguish two objects next to each other. The

relation is called Abbé equation. In it, NA=n_sing is the numerical aperture of the imaging
lens, n_is the refractive index of the medium, and q is the half-angle of the impinging rays

from the normal incidence. Substituting (2.17) in (2.18) we obtain

_ 0.612(1.225nm)

M) = S voron, sing

(2.19)

Since TEM experiments are conducted in vacuum, n_=1; q is generaly small, therefore

sinq =q . A critical length scaleistherefore

[(nm) = 0.7%0 . (2.20)

Waq

For a 100 keV system, the theoretical diffraction limited resolution is | = 0.237nm, assuming

g = 0.01rad . Thisvaue is comparable to the interatomic spacing.

Scanning Tunneling Microscopy

The scanning tunneling microscope, invented in 1982 by Gerd Binning and Heinrich Rohrer,
uses an atomically sharp tip placed sufficiently close (a few angstroms) to a surface to produce
an electron tunneling current between the tip and the surface. By measuring this current as the

tip scans the surface, images of the surface are obtained which, under favorable circumstances,

have alateral resolution of ~ 1;6\ and vertical resolution of ~ O.LoA.

The basic principle of the STM can be understood with a model introduced by Tersoff and
Hamann in 1983. The tip is represented by a spherical potential well within which the
Schrodinger equation is solved. By retaining only the spherical symmetric solutions, a smple

expression is obtained for the tunneling current | at low bias voltage of V : | ~eVr (F, EF),
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where r (F, EF) is the local density of states at the Fermi energy, E., of the surface at the

position r of the tip. Thus, scans taken at constant current measure contours of constant Fermi-
level charge density at the surface. It should be mentioned that STM is sensitive to charge

density, rather than simply atomic positions.

STM is very important technique, and its impact on the development of epitaxial growth and
investigation of its fundamentals is huge. However, utilization of this technique during the
growth processes faces some technical problems. If an STM is placed in a conventional growth
chamber, the tip shadows the incoming molecular beam. Thus, the imaging of growing surfaces
has had to rely on one of two indirect strategies. The most common is to image a surface that
has been quenched after a prescribed period of growth, thereby providing a “snapshot” of the
surface. It has become possible also to arrange scan and growth rates within specially
designed growth chambers to image the same region of a surface during growth Though
technically more demanding, this approach is the more desirable in principle because
particular kinetic processes can betracked and no quenching is required, thus providing a
more faithful record of surface evolution. But, because of the very slow growth rates usedin
current implementations of this “in vivo” method, the growing surface is closer to equilibrium
than for more typical growth rates and, moreover, is exposed for relatively long times to the
ambient impurities which are always present in any growth chamber. These factors can
affect the growth in several ways, so care must be taken when interpreting such images to
ensure that they reflect the intrinsic growth characteristics of the material.

STM images of the surfaces of Si and GaAs are shown in Fig. 2.12. These images revea an
important feature that is typical of semiconductor surfaces (and surfaces of many other
materials). The creation of a surface produces broken, or dangling, bonds which leave the
surface in an unstable high-energy state. The formation of new bonds to lower the surface

free energy resultsin displacements of surface atoms from their bulk-terminated positions.
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Figure2.12a) STM imagesof Si; b) STM imagesof GaAs

Atomic For ce Microscopy

When the tip of an STM is brought close to a surface, the atoms near the apex of thetip exert a
force on that surface which is of the same order of magnitude as the interatomic forces within
the surface. This effect is the principle behind the atomic force microscope. An STM tip,
mounted on a flexible beam, is brought just above a surface. The force between the surface and
the tip causes a small deflection of the beam. The surface is then scanned while a constant force
is maintained between the tip and the surface with a feedback loop similar to that used in the

operation of an STM.

The AFM complements the STM in several ways. Because the STM relies on a tunneling
current for its operation, it is sensitive mainly to the density of electronic states near the Fermi
level of the sample. Thus, this density of states must be non-zero, i.e. the sample must be
conducting. However, since the AFM tip responds to interatomic forces, which is a
cumulative effect of al electrons, the sample need not be a conductor. Additionaly, since
thetunneling current decreases exponentially with the tip-sample distance, an STM tip must be
placed within afew angstroms of the surface to maximize the resolution of the image.
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The AFM most commonly operates in this mode (the “contact” mode) as well, but it can also
operate at much larger distances from the surface (50—150 A) for samples susceptible
to damage or ateration by being in close proximity to the tip (the “non-contact” mode).
But, eveninthe contact mode, attaining atomic resolution is much more demanding
technicaly than with the STM. Thus, many applications of the AFM involve scanning large
areas (up to microns) to image the gross morphology of the sample. This has the advantage of

not requiring a UHV environment and AFMs often operate in ambient atmosphere or in a
liquid.
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Chapter 3 Electrons in low Dimensional Structures

Quantum effects arise in systems which confine electrons to regions comparable to their de
Broglie wavelength. When such confinement occurs in one dimension only (say, by a
restriction on the motion of the electron in the z-direction), with free motion in the x- and y-
directions, a “two-dimensional electron gas” (2DEG) is created. Confinement in two
directions (y and z, say), with free motion in the x-direction, gives a “one-dimensional
electron gas” (1DEG) and confinement of its x-, y-, and z-motions at once gives a “zero-
dimensional electron gas” (ODEG). In this section, we consider the description of ideal
electron gases in these cases, i.e. electron gases in which there is no motion in the confining
direction and where we neglect interactions between the electrons. We will then use these
results in the following section to characterize the density of states in rea low-dimensional

structures, in which there is some degree of lateral mobility.

3.1 Free Electrons in Three Dimensions

An unconfined electron in free space is described by the Schrodinger equation

n(o® 0% 07
T om 2t o2t
2m\ ox= oy® o0z

jy =B (3.1)
where misthe free-electron mass. The solutions of this equation,
- 1 i
y(N)=——3¢€ (3:2)
()

are plane waves labeled by the wave vector
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k(K. k,.k,)
and correspond to the energy

e H(kE K k)
- 2m 2m

E

(3.3)

The vector components of k arethe guantum numbers for the free motion of the electron, one

for each of the classical degrees of freedom.

The number of statesin avolume dk = dk,dk,dk, of k-spaceis

2
(2p)’

g(k)dk = dk (3.4)

with the factor of 2 accounting for the spin-degeneracy of the electrons. To express this

density of states in terms of energy states, we use the fact that the energy dispersion (3.3)
depends only on the magnitude of k. Thus, by using spherical polar coordinatesin R-space,
dk = k> dksingdgdj and, integrating over the polar and azimuthal angles, we are left

with an expression that depends only on the magnitude K:
1.
g(k)dk = F k“dk (3.5

By invoking (3.3), we can perform a change of variables to cast the right-hand side of this

equation into aform involving the differential of the energy:

1 1 (2mE ) dk 1 (2m\**
szdk:F( ;; jEdE:F(FI—Tj JEdE (3.6)



From this equation, we deduce the well-known density of states g ( E) of afree- electron gasin

three dimensions:

32
g(B) = 12(2m) JE (3.7)

ZpF

Notice the characteristic square-root dependence on the energy.

3.2 Ideal Two-dimensional Electron Gas

An idea 2DEG differs from free electrons in three dimensions in that the electrons have
unrestricted movement inonly two dimensions (x and y) with complete confinement in the
z-direction, i.e. there isno freedom of movement at all in this direction. The energy of an

electronin a2DEG istherefore

k1K k)

E 3.8
2m 2m (38)
The number of states within an areain k-space box of dk = dkxdky is
g(k)dk = 2 4k (3.9)
(2p)* '

with the factor of 2 again inserted to account for the spin degeneracy of the electrons. We

proceed as above, but now use circular polar coordinates to obtain

g(k) dk = plkdk (3.10)
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where k=,/k*+ ky2 . We again use the relationship between energy and wave vector (3.8) to

express the density of statesin terms of the energy:

)
lkdkzl(znﬂ Koe-—" g (3.11)
p p\ # dE p A
The density of states g( E)of a2DEG is therefore given by
m
E) = 3.12
9(B) o7 (312)

Thus, for a 2DEG the density of statesis a constant, i.e. independent of the energy. Thisis one of
the fundamental features of electrons in planar hetero- structures which make such structures

useful for applications.

3.3 Ideal Zero- and One-dimensional Electron Gases

When an electron is allowed only one-dimensional motion (along, say, the x-direction), the

energy is given by

E=lt— =" (3.13)

A procedure analogous to that used in the preceding two sections then yields for the density of

states the expression
12
1(2m 1
g(B) = —(—] — (3.14)
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This shows that the density of states of a one-dimensional electron gas (1DEG) has a square-
root singularity at the origin.

An ideal zero-dimensional electron is one that exists in a single state of fixed energy E,. The

density of statesisthen given by

g(E)=d(E-E,) (3.15)

Figure 3.1 shows energy dependence of density of statesin 1, 2 and 3 dimensional cases.

A
1D: 2D
g(E)o LI[E 2(E) = const
Q g
= F - F
A
3D:
glEy= [E
LE.“
= F

Figure3.1. Density of statesfor anidea electron gasin 1, 2 and 3 dimensions.
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In rea low dimensional crystalsi) electrons interact with ionsin lattice sites. This is accounted in
the frame of effective mass approximation described in Chapter 1; ii) the dimension in which the
motion isrestricted in reality isfinite. This point is discussed in next sections.

3.4 Real Electron Gases: Single Particle Models

By a quantum well we mean any structure in which an electron (or hole) is strongly
confined in one dimension. A practica example of great importance is obtained when a plane
layer of GaAs lies within a sample of bulk Al,Ga.x As. These materials may be grown, e.g. by
molecular-beam epitaxy (MBE) in a layer- by-layer fashion to form such a structure. The
materials are lattice-matched (the same lattice structure and very similar lattice spacing).
Moreover, their band structures are qualitatively similar if the aluminum proportion x is less
than approximately 0.4. However, the band gap of Al«Ga.x increases linearly with increasing x.

What results (when x=0) is adiscontinuity in the conduction and valence band edges, E, and

E,, as shown in Fig. 3.2. The precise proportion of the discontinuity taken up by the

conduction band alone must be known beforehand, from experiment, or else from theory.
Quantum confinement of an electron within the thin layer of GaAs will happen if its energy is
below that of the conduction-band edge in the AlGaAs. This is an example of a compositional

quantum well.
d ke
-
AlGaAs AlGaAs
GaAs
Ev

Figure3.2. Band-edge diagram for atypical AlGaAs/GaAs quantum well. The fraction x, of
Al islessthan 0.35. 3



The envelope function obeys a Schrodinger-like equation which, in the simplest

materials, such as GaAs, and near k = 0, takes the form

{_ 2?:,* V2+V(F)}j (r)=8 (r) (3.16)

where E is measured from the conduction-band edge and V does not include the crystal
potential. The entire effect of the crystal potentia is to change the electron mass from mto m*,
the effective mass. (In GaAs, for instance, m* = 0.067 m.) The potential V in equation (3.16)
contains the effect of all externa potentials, and in particular, that due to changes in the

conduction band edge.

Ideal Square Well

Most ssimply, the square-well potential produced in a compositional quantum well can be
approximated by that of an infinite square well, i.e. that in which the potential is constant
within the well and infinite outside the well (Figure 3.3 a))

0 for 0<z<d
V(z):{

) (3.17)
oo otherwize

Since motion is unrestricted inthe y- and z-directions, the Schrodinger equation (3.16) is
separable in rectangular coordinates, so the coordinate dependence of the wave function in the
(x, y) plane can be separated from that in the z-direction. This results in plane-wave solutions

for the motion of the electron in the x- and y-directions,

Y(x,y,2) =e“dYj (2) (3.18)
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where j (z) obeys the one-dimensional Schrodinger equation for aparticle in aninfinite square

well

L@ (9 (o 319

where V (z) is given by (3.17).

As is well known, the general solution of (3.19) must be a linear combination of sines and

cosines chosen to satisfy the boundary conditions imposed by the well (Fig. 3.3 b)). Since | (z)

must vanish at z=0, the solutions must be of the form sin(kz)and, since it must also vanish at

z=d,wemust choose k=np /d, n=12,3.... . Thisrestriction results in the quantization of the

energy. The alowed energies associated with the motion of the electron along the z-direction are

th 2n2
= 3.20

" 2m*d? (3:20)
The total energy of the electron is the sum of this quantized energy and the kinetic energy due to

its (X, y)-motion:

_rP(kZ+k7) . 1’p 2n?

E 2
2m* 2m* d

(3.21)
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Figure 3.3. a) Infinite square-well potential; b) Energies and wave functions for the first two
quantized statesin asquare-well potential.

Already, differences from the ideal 2DEG case are evident: (i) there can be severa different
quantized energiesE, , i.e. severa possible states of z-motion, and (ii) the electron wavefunctions

have afinite spread in the z-direction.
The E—Rdispersion relation for an infinite quantum well is thus a generaization of simple
parabolic form shown in Fig. 3.4 and corresponding to ideal 2D electron systems.

Oneobtains instead the situation shown in Fig. 3.5, where from equation (3.20) for

thz
n=1 =

S 2m* d?
For energies E<E, (A in Fig. 3.5), there are no states, for energies B (E,<E<4E,)
the density of states (per unit area) isjust that for a perfect two-dimensional electron gas,
namely g,(E)=m*/ph°. For energies C the density of states (DOS) is2g,; energies D -
9E, < E<16E, have 3g,for the DOS, and so forth.
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Figure 3.4. Parabolic E—k relation for idesl 2D system
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Figure 3.5. Energy versus wave number k for an infinite quantum well

To convert thisg(E) , which is the density of states per unit area of real space, to a density of
states per unit volume, one must divide by an appropriate length in the z-direction, in this case
by the well width d . This three-dimensional DOS then risesin steps of 2m* /p #*, as shown in
Fig. 3.6, whereit is also compared with the ordinary bulk DOS. If statesin the well arefilled up

to some Fermi energy E., then states at the Fermi level (the ones of most interest for

transport) will have different kinetic energies of motion in the x-y plane, and therefore different
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Fermi velocities, depending upon their quantum state in the well. Thus, for instance, if E. lies

above some level E, , then the Fermi wavenumber for states inlevel nisgiven by

21,2
E.-E - hoks
2m*

with the corresponding Fermi velocity

— hkF
F m*
related to k. inthe usua way.
The density of states can be written as
m
E)= E-E.),
(E-E )= LE>E,
q " 10,E<E,
gLE)
i
iD Ry
- T |
-
:_.r'
&
= E
DEy 4En BED l6E:

(3.22)

(3.23)

(3.24)

Figure 3.6. Density of states for an infinite square well. The corresponding density of states

for an unconfined 3D system isalso shown for comparison (broken line).
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Figure 3.7 also shows dispersion relation in quantum well.

Parabolic sub-bands

Energy

Figure3.7 E— K relationin quantum

° 13 well

Holesin Quantum Waells

Holes as well as electrons can be confined strongly in one or more dimensions. In a GaAs
guantum well in the GaAs/AlGaAs system (Fig. 3.2), there is a quantum well for holes wherever
there is awell for electrons. In other systems, there may be a well just for electrons. In the first
case we have type-I quantum structure, in the second one - type-11 quantum structures (Figure
3.8)

There is athree-fold degeneracy in the hole bands at the I'-point (k =0), which is the highest
point in the valence bands. In the bulk one deals with three sorts of holes. Spin-orbit splitting
depresses one of these bands to create the spin-split-off band, which is then often ignored. The

other two bands correspond to heavy and light holes (so called because of their greater or



smaller effective mass); these states are degenerate in energy at the I"-point. In the bulk one can

treat the two (or three) sorts of holes separately (Figure 3.9).

Type-1 Tvpe-I1

Figure 3.8 type-1 and type-Il quantum structures

In quantum wells and other strongly confined systems, however, the confinement breaks the
symmetry which caused the degeneracy in the first place. The hole states then mix and, in

genera, they will mix differently in different directions.

m

=5
-
e ©
/ra‘ r\

Y

Figure 3.9 Dispersion relation for bulk crystal near k=0 point
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Non-parabolicity

For electrons with energies near the bottom of the conduction band, the E(k)band

structure is parabolic: E =#°k? / 2m* For somewhat higher energies, thisrelation is no longer
true (the importance of non-parabolicity, at a given energy, will depend on the material in

guestion). However, one can still define an energy-dependent effective mass m( E) by

h°k?
" 2m* (B)

E(K) (3.25)

We can suppose that m(E)is known in the bulk. Then, in an infinite square well, the

quantized energies E, will be given by

E m(E.) :%hzkz, K =% (3.26)

Againthefull energy E E for an electron in state nisgiven by

_ K +E, (3.27)
2m(E)

The situation isillustrated schematically in Fig. 3.10.

Non-parabolicity will modify the quantized energies E,' from their original value, though

only negligibly for low energies near the conduction-band edge (i.e., for low n).
Moreover, for each level the E—k relation will be parabolic near k =0, but the curvature of

the parabolas will become broader as n becomes higher (non-parabolicity is known to increase

m(E)as E becomes higher). And finally, the E-—krelation for each level will itself become

non-parabolic as k becomeslarge (Figure 3.11).
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Figure 3.10 Parabolic and non-parabolic E—k relations for anidea square well
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Figure 3.11 E -k relations at whole range of wave vector
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3.5 Finite Quantum Wells and Real Systems

One of the most crucia differences between this case and that of an infinite square well isthat
the electron wavefunction need not be zero in the barrier region (Figure 3.12). This fact that
electrons can penetrate into the barrier region will be particularly important when it comes to a

discussion of the physics of superlattices (see below)

An electron in afinite square well is confined by two potential steps. These could be the finite
conduction-band discontinuities, for instance, in Fig. 3.2. Usualy one solves for the
wavefunction | at a potential step using the following assumptions. (i) j must behave
suitably at infinity (usually, decaying to zero), (ii) j must be continuous at the interface (say, at
the potential step), (iii) the first derivative of | must aso be continuous at the interface

(Fig.3.13). These conditions can be stated as

dj,
dz

_dj,
.o Oz

(3.28)

z=0

(a) (b

ki giE)

Figure 3.12 Schematic illustration of (a) wave functions, (b) energiesand (c) density of states
for a particle confined to afinite square well.
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Figure 3.13 Thewavefunction at anordinary potential step.

A semiconductor interface, however, is more subtle than an ideal potential step for various
reasons. In spite of thisfact, the first assumption one might makeisthat the envelope function
] for the electron responds to a conduction band offset in much the same way as the
complete wavefunction to an ideal potential step. This begs a number of questions, some of
which we shall mention here. What one realy wants to know is the correct matching
conditions for the envelope function at a material interface (Fig. 3.14). Although there are
many such questions still to be answered, it isthe case that a simple effective-mass approach is

surprisingly good.)

I|-|=ﬂ|

oy

I = m m =m32

Figure 3.14. Boundary conditions near amaterial interface. Electrons inthe materia on
the left (right)-hand side have effective mass m (m, ).

Various prescriptions have been proposed for the matching conditions of awavefunction at
a semiconductor interface. Which is correct is still a matter of debate, and it may be the case that
there is not a unique answer. We present here the matching conditions in common use, which are

known as the Bastard conditions.
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At an interface, the effective mass and the conduction band edge potentia are effectively

discontinuous. Using the notation of Fig. 3.14, we have approximately that
e =m(z)=m+(m,-m)0(z)

V=V (2)=V,0(z2) (329)
o(7)- {O, z<0
1z>0
The usual effective-mass Hamiltonian

V24V (3.30)

is not Hermitian for such a z-dependent effective mass, but must be made so for quantum-
mechanical consistency. This can be done by using instead the Hamiltonian
o1

=V

V4V (3.31)

We assume that the envelope function j (z) iscontinuousat z=0.We next suppose that, in

fact, m(z)and V(z) change very rapidly but continuously over a small distance Az=2e (Fig.
3.15).

Figure 3.15. The quantities m(z)and V(z) show smooth but rapid variation over asmall

distance +e on either side of the interface, at z=0.
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We now take the wavefunction W (X, y, z) = €**€"”j (2) and then integrate the effective mass

equation Hy =Ey from z=—-eto z=+e-

«|d| 1 dy
[ {E{ a E}}dzjtvcy (+e)e=E[y (+e)-y (-e)]e (3.32)
Wenow let e >0 SinceV,,y and E areall finite, the two terms multiplied by e both

approach zero as € — 0. Thus, the first term on the left in (3.328) must aso approach zero,
giving

idyl _i% (3.33)
mdz| =~ m dz|
This suggests that the proper boundary conditions, at the (plane) interface ( z=0) between
materials 1 and 2, are
1 dy 1 dy
0)=y,(0), —=2% =——=2 3.34
yl() yz() mle o rnz dZ o ( )

3.6 Quantum Wires

Above we have considered confinement of electrons to two dimensions. To create systems of yet
smaller dimension, itisusua to start with awell-confined two-dimensional electron gas, so
tightly confined that electrons are present in only asingle energy level. A new confinement is
then imposed on this system, in adirection perpendicular to the original confinement (Fig.
3.16). A direct way to do this lateral confinement is by cutting the material containing the
2DEG, for instance by etching, to remove all but a thin strip of the 2DEG (a typical width L
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might be approximately 1000 A. The electrons, now confined in two dimensions but free to

move in the third, form a quantum wire.

The simplest theoretical picture of such a quantum wire is given by the confinement of an idedl
two-dimensiona electron gas in an infinite square well. Figure 3.17 illustrates the
wavefunctions of the first two quantum states of such a quantum wire. The origina 2DEG
liesin the plane z = 0, with the additional confinement in the x-direction. The energies of x-

confinement are

2 2,-2
- _Ipn (3.35)
- om* 2

and thetotal energy is

21, 2
_ptne Ik
M omE LR 2m*

(3.36)

In this formula first terms corresponds to confined motion, the last one to unrestricted motion in

y-direction.

e

Figure 3.16 A two-dimensiona electron gas asthe basic ingredient for forming a
guantum wire.
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Figure 3.17 Wavefunctions for an electron in an ideal quantum wire. An ideal 2DEG in the
plane z = 0 has undergone additional confinement by infinite potential stepsin the x-direction

Figure 3.18 shows the density of states g(E)for such an ideal quantum wire. g(E) shows the

characteristic singularity in E™**which was derived for a 1DEG in equation (3.14). In a

quantum wire, such a singularity will occur at each energy E, of quantization in the x-direction.
For rea quantum wires, the spacing of the quantized energies E,, and the corresponding

wavefunctions, will depend on the precise shape of the potentia V(x, y), just as they

depended, for a2DEG, on the shape of the potential V (z).

g(E)

B

Figure 3.18. Density of states for an ideal one-dimensional quantum wire. 63



This density of states can be written as

(2m ]jz(E_ En n )71]2

g(E):Z — q(E_Eany)1

nn, P h
LE>E,,

E-E =
q( nxny) {O; E < Enxny

3.7 Quantum Dots

Electrons can be confined in all three dimensions in a “dot” or “quantum box”. The situation is
analogous to that of a hydrogen atom: only discrete energy levels are possible for electrons
trapped by such a zero-dimensional potential. The spacing of these levels depends, as aways, on
the precise shape of the potential. The development and application of quantum dot systemsis
an increasingly important research topic at the time of writing for a number of reasons,
both technological and theoretical. Figure 3.19 presents schematic image of quantum well,

guantum wires, and quantum dots.

| /7

Figure 3.19 Cartoon of confinement along 1, 2 and 3 dimensions. Analogous to a quantum
well, quantum wire and quantum dot.



For quantum dots of rectangular shape (with sizes d; d, ds) motion is quantized in all three

dimensions. Energies and corresponding wave functions are given by
th 2an th 2n22 th 2n32
o = + +
wes o 2m*d? 2m*d,?  2m*d,;’

V=30 L s 2y Jan| P 2] <223

1

(3.37)
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Chapter 4 Electrons in low Dimensional Structures of different shape

and material distribution

Electronic states in quantum structures are strongly influenced by shape of structures and
material distribution profile. In this chapter we consider spherical quantum dots and cylindrical

nanowires, as well as quantum wells with confinement potential of non-rectangular shape.

4.1 Electrons in an Infinite Spherical Box

Consider a particle of mass m and energy E >0 moving in the following simple central

potential (Figure 4.1):

0 O<r<a
V(r)= 4.1
(r) {oo otherwise *.1)

Figure 4.1 Infinite spherical box
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Clearly, the wavefunctiony is only non-zero in the region0<r <a. Within this region, it is

subject to the physical boundary conditions that it be well behaved (i.e., square-integrable)

a r=0, andthat it be zero at r =a . The wavefunction is to be written in the standard form — as

aproduct of radial and angular part (for details see textbooks of Quantum Mechanics)

y (r.a. )=R,Y .(a.)

4.2

where Yl,m(q J )is a spherical function; r,q,j are spherical coordinates. Taking into account

that Hamilton operator in spherical coordinates can be written as

where L isan angular momentum operator
LY, . (a.j ) =71 (1 +1)

we obtain the equation for the radial part of the wave function (4.2)

d? r dr r2

d°R, +ng‘" +(k2—|(I +l)]Rn =0

Intheregion 0<r <a , where

2mE
k? = 2

(4.3)

(4.9

(4.5)

(4.6)

Defining the scaled radial variable z=kr, the above differential equation can be transformed

into the standard form
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dZZ z dz z

d°R, L20R, +(1—|(|+1)JR”,| 0 47)

The two independent solutions to this well-known second-order differential equation are

called spherical Bessel functions, and can be written as

d | (4.8)
y (z):_ '(_EEJ (%j
! zdz z
Thus, thefirst few spherical Bessel functions take the form
. sinz
h(2)==
. sinz cosz
(A==
(4.9
(z)=C°SZ
0 7 !
cosz sinz
W(D=—

These functions are also plotted in Fig. 4.2. It can be seen that the spherical Bessel functions are

oscillatory in nature, passing through zero many times. However, the vy, (z) functions are badly
behaved (i.e., they are not square-integrable) at z=0 , whereas the j, (z) functions are well
behaved everywhere. It follows from our boundary condition at r=0 that the y, (z) are

unphysical, and that the radial wavefunction R, is thus proportional to |, (z) only. In order to

satisfy the boundary condition at r =a [i.e, R, =0], the value of k must be chosen such

68



that z=ka corresponds to one of the zeros of j, (z). Let usdenotethe nthzeroof j (z) as z,,.

It follows that

z,=ka, n=123..

Hence, from (4.6), the allowed energy levels are

(4.10)

(4.11)

The first few values of z | arelisted in Table 1. It can be seen that z,, is an increasing function

of both nand | .

0.5

-

—

-0.5

T T T T I T T T T I-\.I

Figure 4.2 Thefirst few spherical Bessel functions.
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We are now in a position to interpret the three quantum numbers-n, |, and m--which determine
the form of the wavefunction specified in EqQ. (4.2). The azimuthal gquantum numberm
determines the number of nodes in the wavefunction as the azimuthal angle ¢ varies between 0

and 2. Thus, m=0 corresponds to no nodes, m=1 to asingle node, m= 2 to two nodes, etc.

Table.1 Thefirst few zeros of the spherical Bessel function j, ()

n=1 n=2 n=3 n=4

|=0 3.142 6.283 9.425 12.566
|I=1 4.493 7.725 10.904 | 14.066
=2 5.763 9.095 12.323 | 15.515

=3 6.988 10.417 13.698 | 16.924

Likewise, the polar quantum number | determines the number of nodes in the wavefunction as
the polar angle 6 varies between 0 and . Again, | =0 corresponds to no nodes, | =1 to asingle
node, etc. Findly, the radia quantum number n determines the number of nodes in the
wavefunction as the radial variabler varies between 0 and a (not counting any nodes a r =0
or r =a). Thus, n=21corresponds to no nodes, h=2 to a single node, n=3 to two nodes, etc.
Note that, for the case of an infinite potential well, the only restrictions on the values that the
various quantum numbers can take are that n must be a positive integer, | must be a non-
negative integer, and m must be an integer lying between —| and |. Note, further, that the

allowed energy levels (4.11) only depend on the values of the quantum numbers n and | .

4.2 Electrons in an Infinite Cylindrical Box

Let’s first consider ideal system - particle in cylindrical box with infinite walls, so it is
assumed that potential energy is O inside the box and infinity outside the box. In this case we
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only need to solve Schrodinger equation only inside the box, outside the particle wave function is

equal to zero (Figure 4.3).

In cylindrical coordinates the Schrodinger equation for V,,, =0 hasthe form:

Figure 4.3 Infinite cylindrical box

2 2
ii r i +i28_2+6_2 (Dz_zn;ECI)
r or roq° oz h

than

We can represent

k2 =k?— k2 +K>

(4.12)

(4.13)

(4.14)

(4.15)

71



o(r,q,2)=y (r,9)j (2) (4.16)

and separate z and (p,0) variables:

10 0 1 0
L—a[r ajﬂ—zaqz}y =tk (@1
d? '
; ij = K] (4.18)

As known, the solution of eg. (4.18) is

j (Z)Z\Esin nip z (4.19)

n,=123....

22212
This function describes z motion of particle, which brings EE-TZ—h part in total energy. Here | is

length of wire. If it istoo long we can represent z motion as motion of free particle:

j (2)= ﬁe‘kzz (4.20)

In Equation (4.17) p,0 variables can also be separated. |If we multiply the both sides onr ?,

represent
y (r,q)=P(r)Q(a) (4.21)

and replace k* —k? = k* —k? +m* — m’ we obtain separate equationsfor r and q;
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W-F mZQ:O (422)
d’P  dP
2 2 2 2 2
{r dr2+rd—r+[(k —K2)r —m]}P:O (4.23)
The solution of (4.22) is
Q(q)=Ce™ (4.24)

Because of the requirement of periodicity Q(q+2p)=Q(q) m get thevalues: m=0,+1,+2.

Normalization condition makes C =, /% .

By changing variable

JKZ=K2r =x (4.25)

eguation (4.23) in transformed into

,d?P

Xdz

+x%+(x2—m2)P=O (4.26)

The solutions of (4.26) owing desired behavior in zero is first kind Bessel function Jm(x). The

second Bessel function that satisfies equation (4.26) has singularity in the origin (Fig.4.4). As our
wave function should vanish at the surface of the cylinder, we are interested in solution whci has
correct behavior at the origin.  Substituting (4.25) we obtain

P(r)=C3,(x)=C, (i ~kr | (4.27)
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At r =a (ais the radius of cylinder) wave function must be 0. This determines k and,

consequently E.

As

JK-Ka=a,, (4.28)

where oy, 1S the n-th root of J,, function.  Substituting (4.28) in (4.13) we obtain the

expression for the total energy of a particlein acylinder.

h2 ar$1,n k2
h2k? a2 K h? (a2 nzp 2
E= 5 = > :2—[ ”;n + 72 ] (4.29)
m m m{ a

P(r ):cam(x):cam[amv" r ] (4.30)

cszm(aﬂerm(aﬂrjrdr _1 (4.31)

If we introduce new dimensionless variables radius. :r—, and use the properties of Bessel

functions
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We obtain

_ 2
and
2 _
P(r)_me(amnr) (4.34)

gm

D (1,020 ) =Y o (13)i 0, (2) = BT J. (amnr_)\/lésinnip 7z (435)

Figure 4.4 @) Bessel function of the first kind ; b) Bessel function of the second kind.

Thefirst few valuesof a , arelistedin Table 2.
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Table.2 Thefirst few zeros of the spherical Bessel function J,, (X)

n=1 n=2 n=3 n=4

m=0 | 24048 5.5201 8.6537 | 11.7915
m=1 | 3.8317 7.0156 10.1735 | 13.3237
m=2 | 5.1356 8.4172 11.6198 | 14.7960

m=3 | 6.3802 9.7610 13.0152 | 16.2235

4.3 The Effect of Material Distribution Profile

Very often in quantum structures composition variation takes place, which is connected to the
materia inter diffusion. In this case band edges change smoothly across the interface and
confinement potential does not have rectangular shape. Figure 4.4 shows so called core-shell
nanostructures. In the nanostructure on left-hand side there is no diffusion of the shell material,
while in the nanostructure on right-hand side diffusion of shell material into the core materia

takes place. Figure 4.5 presents material distribution in quantum dots.

Such systems are often modeled by parabolic potential. Polsh-Teller type potential is aso used
for modeling. These two potentials will be considered below.

iy

Figure 4.4 core-shell nanostructure with different material distribution profile 76



Figure 4.5 Material distribution in quantum dots, different colors correspond to different
composition

Parabolic potential

Parabolic potential can be written as

V(%) =%kx2 (4.36)

This potential describes well confining potential formed by material diffusion in quantum

structures.

For this potential the Hamiltonian has the form

H=—————+ k< (4.37)

Thus, we have to solve Schrodinger equation

2 43
i di(x) 1

ke? = Ej 4.38
2m  dx? 2 d (%) (4:38)

The equation is substantially smplified if make following notations

X = (r;—i(j X (4.39)

77



2E, k
h = ) W=, |—
aiw m

In these notations equation (4.38) gets the following form

d¥ (x)
dx?

+(h —xz)j (x)=0

Let’s first consider the solution for large x . It will be

+1y2

j ()¢

Proceeding from the fact that the wavefunction must remain finite when

solution with *“-” sigh will be used.

For arbitrary x the wave function can be written as a product of finite polynomial on (4.42)

Substituting it into (4.41 we arrive at

d’H (X)—Zx dH (x)

i "+ (h=D)H (x) =0

As mentioned above H (x) isafinite polynomial

If substitute the polynomial in (4.44) one can obtain the recurrent relation

(4.40)

(4.41)

(4.42)

X — o0, only the

(4.43)

(4.44)

(4.45)
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(2n+1-h)

A= vy (4.46)

If we want to make polynomial finite, it should be cut at some value of n, for this A,,, Should

become zero while A, =0 Thiswill be guaranteed if

(2n+1-h)=0 (4.47)

N 2E . . : .
Taking into account that h = hvx? , the following expression is obtained for discrete energy levels

in parabolic well:

E, = (n+%) hw (4.48)

The order of polynomia defines the number of levels. The higher N the higher the level, and
higher the order of the polynomial, and consequently corresponding wavefunction has more
nodes, asit should be.

Functions those are the solution of equation (4.44) and satify (4.46) recurent relation are
Hermitian polynomials, which is expressed by

H(x)=(-1)e” & (e) (4.49)

Thefirst four lower order Hermitian polynomials are

H,=1

H, =2x

H,=4x*-2 (4.50)
H

H

, = 8x% —12x
, =16x" —48x2 +12
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Figure 4.5 shows the first five states of electron in parabolic well. Energies and corresponding

wave functions are presented.

Figure 4.5 a) energy levels of electron in parabolic well, b) corresponding wave functions

Poschl-Teller Type Potential

Poschl-Teller type potential also can be used for describtion material diffusion in quantum

structures (Figure 4.6). This potential is expressed by
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(4.51)

Uix)

Figure 4.6 Poschl-Teller potential

We are interested in bound states, therefore the energies are negative and discrete. For one

dimensional case the Schrédinger equation has the form

d
y EX)+2—T(E+U—SJ:O (4.52)
dx h cosh“a x
Let’s make the substitutions
X =tanha x
(4.53)
= Y2ME 2rr21U20 =s(s+1)
ha a‘h
With these notations (4.52) equation gets the following form
d o\ Oy e’
— | (1-x°)—=—|+| s(s+1)— =0 4.54
dx{( )dx} { (s+1) 1—x2}y (439
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This equation can be deduced to Hypergeometric form by

e/2

y =(1-x%)"w(x) (4.55)
If change the variable
u=(1/2)(1-x) (4.56)
we arriveat
U(1-u)w"+ (e +1)(1-2u)w —(e—s)(e + s+ w =0 (457)

Solution of this equation is the Hypergeometric function. Therefore
2\&/2 1
y :(1—x ) F[e—s,e+s+],e+l§(1—x)} (4.58)

For x =-1 (i.e x=-x) the Hypergeometri function is finite, if (e —s)=—n is negative integer.

Inthiscase F isa n_th order polynomial. Energy defined from the condition

(e-s)=-n (4.59)

is expressed by

2
24 2
E-- hS?n {—(u 2n)+ [1+ i?:; } (4.60)

The number of bound statesis finite and is defined from the conditione >0 thatisn<s,
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Chapter 5 Electrons in Quantum Semiconductor Structures: More

Advanced Systems and Methods

In Chapter 4, low-dimensional systems were discussed in terms of a single-electron picture, and
the behavior of an electron was examined in the case that it is acted on by various potentials in
semiconductors. Those potentials have been supposed to be externally imposed, for instance by
adiscontinuity intheband gap at an interface between two materials. But an electron will aso
feel the effect of other electronsin the system in which it finds itself.

There are circumstances in which these many-electron effects can be ignored, for example, in
an undoped semiconductor with very few free charges. But in many cases, effects due to the
presence of other electrons can be extremely important. Some of the most interesting low-
dimensional systems involve many charges: there can be many free electrons, and there will
often be in addition some distribution of fixed charges (space charge). To study such systems
properly, we must discuss how to take into account the presence of such charges. The problemis
one of self-consistency because we are trying to predict the behavior of eectrons (or holes),
while that behavior will itself depend upon those charges whose behavior we are trying to

predict: in other words, the problem itself depends upon the solution to the problem.

5.1 Many-body Effects, Hartree Approximation

Consider the reaction of conduction electrons to the presence of a potential well Vo(z) (we

suppose this to be an externally determined well, e.g. a finite square well, which restricts
electrons into a two-dimensional region). Available electrons will be attracted to the well. Any
one electron will react both to V,(z) and to the presence of all the other free electrons in the
system. (If the system responds in such a way as to leave net fixed charges in some regions of

space, the electrons will also interact with those charge distributions; we ignore this effect in

the first instance, but it can easily beincluded later).

83



The simplest approximation which takes into account the presence of many electrons isto
assume that the electrons as a whole produce an average electrostatic potential energy
function V. and that agiven electron feels the resulting total potential, which is the sum of
the original potential and this electrostatic potential

V=V, +V, (5.1)
This is the Hartree approximation. Since the external potential acts in the z-direction only, the
electron gas will be confined in z but will be uniformly distributed in the x- and y-directions, so

that V =V (z). The electron wavefunction is then obtained from the Schrodinger-like envelope

function equation

Lf’nz* +V(z)}f (2)=FE (2) 52)

with V given by equation (5.1).
The mobile electrons in the system all obey equation (5.2). They therefore form a static charge

distribution r (z) which is constructed from their wavefunctions. It is this distribution of
charge which is responsible for V_, the self-consistent part of the potential. Classically, the

relation between a charge distribution  and the electrostatic potential energy function V

arising from that charge is given by Poisson’s equation,

VA (r) & () (5.3)

e0
where e,isthe dielectric constant of free space and e isthe magnitude of the electronic
charge. Note that, in semiconductor physics, by convention, an increase in the magnitude of the
electron energy is taken as positive. In the present case, the r - dependence specidizes to a z-
dependence, while the fact that the electrons are in a semiconductor rather than in free spaceis
taken into account by inclusion of the static dielectric constant e =e,e, of themedium (e, is
the relative dielectric constant of the medium in question). The relevant equation is thus

dV(z)__e (4 (5.4)




The self-consistent potential depends on the charge distribution, but that charge distribution
depends onf :

r(z)=exf[ (5.5)

where the sum is over all occupied states. This means that one must sum over each occupied
level n of the quantized system, and then integrate over k, and k, up tothe Fermi energy
E., for the level in question (i.e, over the energy range E. — E for thelevel n). If there

is also some distribution of fixed chargesr , in the system then the potential depends on the

distribution of al these charges,
r(z)=eXff,[+r, (5.6)

The space (or depletion) charge density r, will usualy be the charge density of ionized

donors or acceptors in the system.

Thus, r will determine V, through equation (5.4), V will determine b through equation (5.2),
f will determine r through (5.5) or (5.6), and so on. To solve this self-consistent problem, one
should start with some reasonable guess. It is common to start withf,, the solution to the
problem of a single electron moving in the external potentia V,. The wavefunctions f, givea

first approximation to the charge density using, say, (5.5). An approximate self-consistent

potential function V. is then obtained from Poisson’s equation (5.3), new wavefunctions are

calculated from (5.2) using the improved potential, and the process is repeated. The use of
computers makes it a straightforward matter to continue this process until convergence is
obtained, i.e. until the electrostatic potential generated from the wavefunctions is the same
potential, to within acertain tolerance, asthat appearing in the Schrodinger equation for which

these wavefunctions are solutions.
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5.2 Beyond the Hartree Approximation

The Hartree approximation treats the many-electron problem at the simplest level and is
adequate for many purposes. The true solution to the problem, however, is given by the potential

V=V, +V_+V, (5.7)
Here, V,. is the correction to the potential due to exchange and correlation effects. That such
effects exist is evident simply from the Pauli Exclusion Principle — no two electrons can exist in
the same quantum state. The presence of an electron in a given state automatically excludes the
possibility of another electron being in the same state, and it can be thought of as exerting a sort
of repulsion on any other electron. These exchange forces have not been included in the

discussion above. In practice, V,. stands for all those many-electron effects not included in the
Hartree approximation. There is no exact theory from which V, can be derived. Exchange

effects alone (those due to the Pauli principle) can be treated by the Hartree-Fock
approximation, to be found in standard textbooks, but these corrections are rather cumbersome
to calculate. A more productive approach seems to be that of the Thomas-Fermi approximation,
or its modern extension, density functional theory. Since these corrections are often small in
practice, we do not consider them further here.

5.3 The 2DEG at a Heterojunction Interface

An interface between two different semiconductor materials can result in a naturally occurring
guantum well and one that is extremely important in practice. Consider a single plane interface
between GaAs and AlGaAs of the type previously discussed. We suppose that the AlGaAs s n-
doped, whilethe GaAs isundoped (Fig. 5.1). Thisis known as modulation doping.
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Figure 5.1 Band-edge diagram for a GaAs-AlGaAs interface before redistribution of charge has
taken place. Mobile electrons can easily be excited into the conduction band of the n-doped

AlGaAs, while the GaAs is undoped. E, and E_ refer to valence and conduction band edges,
respectively

The situation shown in Fig. 5.1 is physically impossible in equilibrium, because in equilibrium
the system as a whole must have a common chemical potential which, in this case, is the

Fermi energy E.. Thus, if such a system is created, it must be unstable. What will happen is

that electrons will be thermally excited into the conduction band of AlGaAs. They will then
migrate into the adjoining GaAs, since there they can achieve states of lower energy (they will
lose energy, e.g. by collisions with phonons). These electrons will thus leave behind in the
AlGaAs a lack of electrons, i.e. the ionized donors will no longer be screened by an equa
number of electrons, and the AlGaAs will acquire a net positive charge, which will build up as
more electrons move into the GaAs. The mobile electrons which are now in the GaAs will be
attracted by the fixed positive charge in the AlGaAs, but will no longer have enough energy to
recombine with their ionized donors. They will thus be trapped in the vicinity of the interface:
the band-edge discontinuity will prevent them from moving to the left, while the Coulomb
attraction of the net positive charge in the barrier materia will keep them from moving very far
to the right. The process continues until the system reaches equilibrium and the electrons have
been trapped in a quantum well, forming a two-dimensional electron gas at the interface between
the two materials.

The charge distribution at such a heterojunction would thus be that shown in Fig. 5.2. The forces
resulting from this redistribution of charge are conventionally represented as a bending of
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conduction and valence bands (Fig. 5.3). The slope of the bands in the neighbourhood of the
interface is proportional to the electric field there. Donor states higher than the Fermi level
must be unfilled (the region of positive space-charge in the AlGaAs). Conduction-band states
below the Fermi energy must be filled (electrons in these states, in the GaAs, form the 2DEG).
The electric field must be continuous across the interface, as shown by the equal band-edge
slopesin the two materials there (we will ignore the small changein electric field caused by the
dlight difference between the dielectric constants of the two materials). However, the electric
field must be zero far from the interface, since there the materials are required to have their
original bulk properties. (We assume that no external potentia has been imposed on this
system.) We seethat self- consistency isvital for a correct description of this system, since only
if the charge due to the electrons themselves isincluded in the potential will the potential
correctly go to zero at infinity.

—m= FElectric field E

~212) ‘
Undoped
GaAs
+ space charge
of ionized donors /
—_— / Charge of
electrons
Z{ / >
\_‘E/
n-doped
AlGaAs
.

—— Force on electrons -eE

Figure 5.2 Charge distributions in a smple heterostructures
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Figure 5.3 A 2DEG in a heterostructure

This type of quantum well is among the most widely used and studied, occur ring in dlightly
different forms with different names but with broadly similar characteristics. Two of these are
the MOSFET (metal-oxide-semiconductor field effect transistor) and the MISFET (metal-
insulator-semiconductor FET). These systems (Fig.5.4) have the useful property that the
number of electrons in the 2DEG can be controlled experimentally. The metal layer forms a
gate, the potential of which can be varied so as to attract electrons to the surface of the p-doped
Si. When the attraction is strong enough that the conduction band is bent well below the Fermi
energy, aquantum well isagain formed and electrons will be trapped in a2DEG, asshown in

Fig. 5.5. Here, the depth of the well, and thus the number of electrons that can be trapped by
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it, isregulated externally by the potential on the gate. The electrons form an inversion layer,
so called since the normal state of affairs in a p-doped semiconductor is for current to be carried

by mobile holes, rather than electrons.

Other similar systems go by the names HEMT (high-electron-mobility transistor) and MODFET
(modulation-doped field-effect transistor), and have been used to obtain 2DEGs of very high
mobility. Such systems are particularly good for the investigation of phenomena such as the
(fractional and integer) quantum Hall effect. One way in which the mobility of two-dimensional
electrons in these systems has been improved is by inserting a spacer layer between the doped
region and the 2DEG, asillustrated in Fig. 5.6.

1A +V gate
G 1 'l —G
= Source |+\+ * ’;J{* * \\\ Drain
o }Capucimr
VNS, SN,
nt nt

|
P-Si

Figure 5.4 Schematic diagram of aMOSFET.
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5.4 The Ideal Heterojunction

Predicting the properties of a 2DEG at a heterojunction is usually a process that involves full-
scale computation. Nevertheless, the appropriate starting point is in the simplest possible
description of the system. The starting point usually chosen is that of an infinite triangular well
(Fig. 5.7). Here the band-gap discontinuity at the interface, to the left, is approximated by an
infinite potential step, while the conduction band edge is assumed to have a constant slope

corresponding to the value of the confining electric field which is present at the interface.

E A
E;

-eK
ynlz) E; -
() En

.
0 Z

Figure 5.7 The infinite triangular well. The rounding of the band edge to the right of the diagram is
drawvn to correspond to physical expectations, while eectron energies and wavefunctions are
calculated assuming a strictly linear potential, to this approximation; E is the electric field at the
interface.

This approximation is simple enough to allow closed-form solutions, which are Airy functions.
As one would expect, the electron energies are quantized, and the electrons themselves are

confined to a narrow region to the right of the interface. The predicted electron states spread
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out progressively in each higher-energy quantum level. All these properties are physically
correct at a qualitative level, but they can aso be taken to be areasonable physical

approximation if thereisarelatively low electron density in the 2DEG.

Since even Airy functions involve the use of tables, or calculations, it is useful to have on hand
an approximation technique which can often be used in conjunction with simple physical
approximations for the system of interest, to obtain quick, approximate, and often simple

numerical predictions. The following section discusses two such techniques.

5.5 Some Calculational Methods

In this section we consider two methods which can give surprisingly good approximate
predictions for low-dimensional structures in which quantum mechanical effects are important:
the Wentel-Kramers-Brillouin (WKB) approximation and the Thomas-Fermi approximation.
They are simple enough to be used either separately or together, and can sometimes give

analytic answers for quantum energies and wavefunctions in small structures.

The WKB approach is an approximate way of solving the Schrodinger equation and is
appropriate for systems in which many-electron effects are either weak or absent. (It can aso be
useful, as a first approximation, even when many-electron effects are important.) The Thomas-
Fermi approach (in the version presented here) is an approximate way of taking many-electron
effects into account, giving what can be avery good approximation to the full self-consistent
potential felt by an electron in the presence of an external potentia together with the band-
bending effects resulting from the presence of al the other electrons. An even better
approximation can be obtained  when these methods can be combined, using the WKB
approximation to solve the Schrodinger equation for an electron in a self-consistent potential

which has itself been obtained from the Thomas- Fermi approximation.
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The WKB Approximation

We consider here a method for calculating approximate wavefunctions and energy levels
which is “semiclassical”, but can nevertheless be quite powerful. This is the WKB
approximation. If many-body effects are neglected, the WKB approximation often leads to
analytic results, or at least to closed-form expressions (in which the answer can be obtained
numerically by doing a simple integral). Even in systems where many-electron effects are
important, the WKB approximation can yield useful information about the way in which
wavefunctions and energies depend upon the parameters of the system. Here, we do not justify
the method in detail, but merely present the resulting approximation procedure in away that

can be applied to systems of interest.

The WKB approximation is semiclassical: in some sense it can be thought of as an expansion
that is good when quantum effects are small. The procedure can be stated in terms of a classical
picture of the motion of a particle in a potentia (Fig. 5.8). Classically, if a particle of energy E
movesin apotential V , the particle can be found only in regions where E >V . The turning points
of its mation (a, b in the diagram) are the points at which E =V (the particle must turn around,
since it cannot proceed into aforbidden region). If VV were constant in each region (e.g. afinite

square well), the solution of the Schrodinger equation,f , would be ssimply

(5.8)

e’ for E>V
e™*? for E<V

i.e. a travelling wave in the classicaly allowed region and a decaying exponential in the
classically forbidden regions. If V is aslowly varying function of position, then one can try to

approximate f by aform similar to that of equation (5.8):

f = eiu(z) 59
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Figure 5.8 Turning pointsaand b for a particle of energy E inapotentia V

where

u= ij k(z)dz (5.10)
with

1 2
[am(E-V)]" for E>V (5.11)

—ik z, for E<V

so kisred in the classicaly allowed regions and purely imaginary in the classically forbidden

regions, asin equation (5.8). The WKB approximation consistsin expressing f as

_cC iijk(x)dx
f(x)= K(X) € (5.12)

According to this equation, we can write f , for example, interms of sines and cosinesin the

allowed region, and real exponentials in the forbidden regions. It is then necessary to connect
these two sorts of solutions at the turning points a and b. The appropriate connection formulae at
the left-hand turning point (a, in Fig. 5.8) are
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Forbidenregion Allowedregion

1 h 1 . (¢ 1
———exp| |kdz &> —=sin| | kdz—= 5.13
* p([ J N u 4'°J o

1 & 1 F 1
—exp| —|kdz «= —cos| |kdz-—=
ool Jeer | f i

and, for turning points like b (right-hand turning points),

Forbidenregion Allowedregion

2 " 1 1 .
——cos| | kdz—-= &> —exp| —|kdz 5.14
Feoaf el | = ool fue 619

%.nukdz_%pj = —%exp[{kdzJ

These connection formulae apply to turning points at which the potential is in some sense
slowly varying. Other places at which one wants to apply the usual boundary conditions are at

z=+0, where one specifies that f cannot correspond to a state that is exponentialy

increasing, or at an infinite potential barrier (a “solid wall”), where the wavefunction is

required to vanish.

The arrows in equations (5.13) and (5.14) are not symmetric. This indicates that the connection
between the indicated expressions isrigorous in one direction (double arrow) but not in
the other. Thus, for example, an exponential with a negative coefficient to the left of the left-
hand turning point (a) will alwaysimply the existence of a cosine-type solution to the right
of that turning point (the second of equations (5.13)), but the existence of a cosine-type
component to the wavefunction to the right of a may not imply the existence of an exponential
of negative coefficient to the left. Care is needed in the direction of the single arrows because
the method is not sensitive to the existence of extremely small terms in forbidden regions (at

any appreciable distance into the forbidden region, a growing exponential swamps a decaying
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one, so that, if agrowing oneis present, it isnot possible to say whether adecaying oneisthere

or not).

It is the matching conditions at the turning points and other boundaries that lead to
guantization of the energy: only for certain discrete values of E will it be possible to find a

solution f which can be matched properly for all z. Since the matching conditions are

approximate, however, the quantized values of E will aso be approximate. Nevertheless, the
approximation often proves to be a surprisingly good one. Note, too, that one has approximate
wavefunctions (equations (5.13) and (5.14)) as well as approximate energies.

Examples

1. Infinitewell (Figure5.9) given by

~ f(x),0<x<a
V(X)‘{oo, X<0x>a (5.15)

where f () is slowly-varying function.

V(x),

A

Figure 5.9 Infinite well with non-homogeneous bottom
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When E >V (x) thefollowing expression is obtained for the wavefunction

1 i k(x")dx' =i | k(x")dx
y (x)= C.e’ +Ce?® =
k(%)
(5.16)
1 nw,
- Clsm( k(x')dx'J+Czcos k(x")dx }
This wavefunction has to satisfy the
y (0)=y (a)=0 (5.17)
Which means cosine terms will disappear in (5.16), the equating the sine to zero gives
_[k(x) dx=np (5.18)
0
For V (x) = Oexact solution can be obtained
an 2h2
E = 5.19
e (5.19)

which coincides to the analytical results for infinite rectangular well.

2. Arbitrary Shape Wdll

We are considering the well given on Figure 5.8. In this case, f must be a decaying exponential

as z—» +oo. This means that we must use the second of equations (5.13) and the first of
equations (5.14). These formulae give two different cosine expressions for the wavefunction;
the condition that these expressions must be the same imposes a condition on the
arguments of the cosines, which produces the quantization condition,
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!kdx+£kdx=%£[2m(E—V)]m dx=(n+1/2)p (5.20)

wheren =0, 1, 2, This condition is, in fact, the Bohr-Sommerfeld quantization condition,
that a particle’s orbit in phase space must equal a half-integer multiple of p . Thisis essentialy

acondition for a standing wave.

3. Triangular well
We are calculating a bound states in a triangular potential well as, for example, the ssimple

picture of aninversion layer (Fig. 5.10), for which the potentia energy function V isgiven by

V()= elE|z, z>0
(D=1, <0 (5.21)

where E denotes the magnitude of an electric field. The wavefunction must decay exponentially
for positive z in the forbidden region and in this case must vanish identically at z = 0. In the
classically forbidden region where z > 0, we must use the first of equations (5.14). Then, for the

cosine function to vanish at the origin, we must require that

b
[kdz=(n+3/4)p  n=012.. (5.22)

from which it is simple to show that the quantized energies E, are, in this approximation,

given by

n

h’e’E? Ve 2/3
E :( om ] [3/2(n+3/4)] (5.23)

The WKB approximation has given us not only approximate vaues for the energy levels,

equation, but also approximate wavefunctions,

99



1

f(2)=——2—sin| [K(z)dz=2p (5.24)
k(z) " 4

example of atriangular potential well is often used as the starting point for a treatment of two-

dimensional electrons in an inversion or accumulation layer.

|
|
|
|
|
|
a b 4

Figure 5.10 Triangular potential well at an infinite potential barrier.

Finally, we note that the WKB method as discussed here does not include many-electron
effects, since it assumes that the confining potential isknown in advance. To generalize
to many-electron systems, one can use the WKB method as part of an iterative solution
together with the Poisson equation. Alternatively, one can use the WKB method to solve a
Schrodinger equation with an approximate but self-consistent potential  obtained from a

Thomas-Fermi approximation.

5.6 The 2DEG in Doping Wells

So far we have discussed compositional quantum wells and quantum wells at heterojunctions.
Another  important example is that of doping wells (Fig. 5.11). Consider an intrinsic
semiconductor (e.g. GaAs), grown one plane atomic layer at atime, which has been uniformly n-
doped in a dlab of width d during growth. Suppose that al donors have become ionized. The
resulting positive charge of these donors creates an attractive force which is then felt by the
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mobile (donated) electrons, which are trapped by that force. The attraction can easily be strong
enough, over a short enough distance d, that quantum effects are important. This is yet another

kind of two-dimensional electron gas.

The charge density of the donors is assumed to be
r(z)=eny(2) (5.25)

where the donor doping density n, is constant for0s|z|<]/2d and the potential energy

function V of these donors create is given by Poisson’s equation:

dz\/:e

2
dz© eeg,

r

r (2) (5.26)

This equation is easily solved: if the second derivative of V is constant, it must be quadratic in

zZ ’
V =a+bz+cz (5.27)

We can choose a to be zero since the choice of a zero of energy is always arbitrary. Moreover, if
we choose the doping slab to be centred at z = 0, as in Fig. 5.11, then b = 0 from symmetry.
Thus,

€ 2

V(Z):ee n,z, 0<|7<1/2d (5.28)
0

r

which yields a parabolic potential well within the region of donor doping. The potentia in
the undoped regions is even more straightforward: in aregion of zero charge, the right-hand side
of equation (5.26) must be zero, and the potential must therefore be linear in z (and symmetric

in2):

V=a4+b'|Z (5.29)

Here a' and b' are determined from equation (3.24) at z:i%d using the fact that the

potential must be continuous. One easily finds that
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2 1 2 e
a'=— Ny (—dj , b'= npd (5.30)
2e.e, 2 2e.e,

np
A Uniformly n-doped
Donor GaAs e plane layer
doping
density

-2 df2

Figure 5. 11 Donor density profile: a uniformly n-doped slab creates a potentia well within
the host material.

Theresulting The resulting quantum well is shownin Fig. 5.12

If electrons are actually trapped in the well, then their presence will modify this potential  (self-
consistent effects). Ignoring these corrections, the energies and wave functions for electrons

in the well are easily obtained, e.g. from the WKB approximation. In the region zs%d the

potential isthat of a simple harmonic oscillator, for which the WKB approximation
gives the exact answers. Thus, for instance, the energies are given by

En:hw(mr%j, n=1,2,.... (5.31)

where the “natural frequency” w is

2 y2
We 52[ eny J (5.32)
m {2mee,
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Self-consistent effects can modify this potential in important ways. First, V(z) itself will be

changed if electrons are present inthe well. Secondly, the ionized donors themselves are more
a random collection of point charges than a continuous uniform charge distribution. This
randomness results in fluctuations in the potential V ( z) . Electrons trapped in the well will tend to

redistribute themselves in such away as to reduce these potential fluctuations, thus screening out

some of the effects of disorder.

‘E
V(z)

o Linear

1 &
"4— Parabolic
]
|
dfl2

SN Y

Doped region

t

Figure 5.12. Quantum well created by the donor doping profile of Fig. 5.11

5.7 The Delta Well

An extreme example of adoping well isadeltawell, formed when the layer of donors in ahost
material is as small as one atomic layer wide, approximately a delta-function distribution in z.

(These are also called delta-doped, or spike-doped, systems.) One can therefore write

N, (z)=Dd(z) (5.33)
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where D is the number of ionized donors per unit area in the host material. Poisson’s

equation then gives the very simple potential energy function
V(z)=a+b|7 (5.34)

with a chosen to be zero for convenience, and

2
p €D (5.35)
2ee,
This potential isgivenin Fig. 5.13.
A E
Vi2)
-

Figure 5.13 Bare potential for adeltawell.

In this case the WKB approximation gives the energy levels

W20 Y[ 3 NP

As aways, this can be the starting point for a better approximation, which must include self-

consistent effects if electrons are in fact trapped in the well. These effects can be quite important,
particularly for high dopin. Here, the number of electrons trapped by the well equals the number
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of donors, and the potential (heavy black line) is seen to differ considerably from the linear,

“bare” potential shownin Fig. 5.13.

We digress briefly hereto note that delta-doping can be used, among other things, to create
high electron mobility devices, starting from a basic accumula- tion or inversion 2DEG.
Figures 5.1 and 5.2 show how electrons in such a 2DEG can come from nearby ionized donors.
One is then often interested in the mobility of these electrons in the two-dimensiona plane in

which they are free to move.

V(z)

Quantized
energy levels

Doping plane

Figure 5.14 Energies and electron probability-densitiesfor adelta well in InSb (self-
consistent calculation; probability densities are each normalized to unity).
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Figure 5.15 Charge distribution in a high mobility electron gascreated at an interface
with deltadonor doping.

This mobility can be severely limited by the scattering of electrons from ionized impurities. In
the situation illustrated in Figs. 5.1 and 5.2, alarge number of these impurities lievery closeto
the plane of the 2DEG and will strongly limit its mobility. The mobility of the 2DEG can
be increased by placing a spacer layer between the donors and the plane of the 2DEG,
thus making the scattering centres more distant. If the donor region is made into a delta-layer,
this scattering can be reduced still further (Fig. 5.15). Here, any free charges to the left of the
interface will betightly bound to the donor layer, and will tend to screen out disorder due
to the random positions of the donors. This will help to produce an approximately uniform

charge distribution, further reducing ionized impurity scattering.

5.8 The Thomas—Fermi Approximation for Two-dimensional Systems

The Thomas-Fermi approximation allows oneto take account of many-electron effects on the

potential felt by asingle electron (in other words, it can give an approximate way of calculating
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band-bending effects caused by the presence of many electrons or holes). This approximation
can provide a very good description of the potential for the particular cases of heterojunctions,
accumulation and inversion layers, and delta-doped systems in the presence of many-electron
effects, and in some cases provides ssmple analytic formulae for the potential. Its use for other

systems may be less straightforward.

When it can be used in this way, the Thomas-Fermi approach provides an approximate
aternative to obtaining a self-consistent iterative solution of coupled Poisson and Schrodinger
eguations, as described inthe preceding section. An early reference to this use of the method

isgiven by Keyes (1976), whose approach we follow here.
We take the potential felt by an electron in a quantum well to be a sum of severa parts:

V

tot

=V, + Ve + Ve (5.37)
where V,, t is the external potential (the band-edge potential in the absence of free charges, and

of any applied electricfield), V, ., isthe potential due to any fixed space-charge distribution in

the system, and V., the self-consistent contribution to the potential (arising from the presence of

mobile electrons in the system).

In terms of the density n, (F) of mobile electrons, the self-consistent part of the potential obeys

Poisson’s equation

2

%: eee [”e(F)Jf”A(F)*”D (F)J (5.38)

where n, and n,are the densities of charged acceptors and donors, respectively. We next
suppose that there are a number of mobile electrons in the system, and use the familiar
relation between Fermi level (measured from the conduction band edge) and three-

dimensional electron density, n,

(5.39)
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which follows from the three-dimensional density of states. Here, E. is understood to mean the

difference between the Fermi energy and the total band-edge potential V,,. Since  depends

tot *

on position, we write equation (5.39) as

23 h° 23
5.40
n(2) (5.40)

E. —th(z)=(3pz)

If we choose our zero of energy tolieat E. , we then obtain

V, (2)=(307)” L (2)*° (5.41)
tot om* ©
which can be rearranged to
1 (2m*\*?
ne:?( i j (V) (542

We can now obtain an approximation for V,, if we restrict ourselves to external potentials

ot
which are either linear or constant in growth direction z This includes inversion and
accumulation layers and delta-doped systems when no space charge is present. (It can also be
areasonable first approximation even in the presence of space charge, since such charge is often
distributed over lengthscales much larger than that of the quantum well in question, giving a
relatively weak contribution to the band bending).

We thus consider Poisson’s equation (5.38) and note that, since V,, is assumed to be a straight

lineandV,,, isneglected here,

dav. d¥.
dzZSC B dz;ot (5.43)

Thus we can combine equations (5.38) and (3.39) to eliminate n, (which is not yet known), to

obtan

)* (5.44)
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This is a differential equation which can be solved for the self-consistent band-edge potential
V... Notethat V,

tot * tot

itself is negative: the approximation refers to systems which contain mobile

electrons, and does not apply when there are none (i.e. when V,,, > 0).

ot

5.9 The Thomas—Fermi Approximation for Heterojunctions and Delta Wells

The Thomas—Fermi approximation of equation (5.44) isfound to have a simple analytic form
when applied to heterojunctions or delta wells with no background doping. It is easy to verify
that (5.44) is satisfied for a potentia of the form

V(z)=-b— 2 (5.45)

4
(14+2)
where b and z, are positive constants, and the interface (or the position of delta-doped layer) is

a z=0. A few simple manipulations show that in this case

b:[GOp szGZJ ( P’ j (5.46)

e 2m*

and z, isdetermined by a boundary condition (e.g. a z=0) for the particular system of

interest. Since V.

tot

is given explicitly by (5.45) and (5.46), one also has an explicit form for the

density n, of mobile electrons from equation (5.42),

* 1 \32
n=—>o a=(2m bj (5.47)
(z+2)

This charge density can be a very good approximation to that obtained from afull self-consistent

solution of Schrodinger’s and Poisson’s equations.

One can now obtain (approximate) energy levels and subband occupations by solving the

Schrodinger equation, using the approximate potential \V,,, obtained by this procedure. The exact

ot
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self-consistent solution can also be obtained from this starting point, thus saving much

computing time.

When the potential approaches zero as z— 0, one boundary condition is needed to fix the

single unknown z, . This may be, for instance, the electric field at the interface (i.e. the slope of

the potential there), or the value of the band-edge potential at z=0, or else the total two-
dimensional density of mobile electrons in the system. In the more general case in which the
system is not charge-compensated, for instance by removing mobile electrons from the system
by some external mechanism, the situation is dlightly more complicated, but an explicit

analytic solution can still be found.

5.10 Excitons in Hartree Approximation

Exciton is a electron-hole pair bound by Coulomb interaction. In bulk crystals in the frame of
effective mass approximation the effect of ions of crustal lattice on the motion of electrons and
holes isincluded in their effective masses. Therefore the Hamilton operator of electron-hole pair
consists of terms corresponding to their energy and the term that describes their Coulomb
interaction.

n* e’

- V2 - 5.48
om P (5.48)

r.e_rh‘

By means of the usual procedure we can separate motion of exciton as whole form electron-hole
relative motion. For this we change variables

R= LMl & ¢ (5.49)
m, +m,

In these variables (5.48) operator gets the following form

2 2 2
Hoee m vz Moo & o MM, (5.50)
2m ‘re_rh‘ m +m
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The eigen functiona and eigen values of this operator are

Py :e'KﬁFn(F)
2 4 (5.51)
EKn:En+K—’ En:_iz %
' 2(m,+m,) n’l e 2n

In quantum structures new terms those describe confinement of electrons and holes are added to
(5.50) Hamiltonian. In most semiconductor materials, these terms influence the motion of
electron and holes much stronger than Coulomb interaction between them. Therefore, usually
first are calculated single-particle states of electrons and holes, and than interaction between

them is accounted in different approximation. That is why in total Hamiltonian single particle

terms are separated:
2 2 2 2
A=t ve T ge € Ly v, =H +H, - (5.52)
znlf 2”\1 r'e_rh‘ r‘e_rh‘
The procedure in Hartree approximation is as follows:
First we solve single particle problem for holes
Hyj = Er?j " (5.53)

Than Coulomb term is averaged by j  functions, and obtain effective potential for electrons

e2

—

r —rh‘

e

Vi ()= v

iv) (5.54)

and solving single particle problem with Hamiltonian with this effective potential

Ho+Vs ()i e =EJ ¢ (5.55)

We obtain electron wave functions in zero order of approximation.
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After this we again average Coulomb term over obtained at the previous stage electron wave

functions:

Va (1) =(i ¢]-

ig)

e h

then solve single particle problem for (5.56)

H, V0 (7)) 1= E5 &

This procedure is continuing until desired convergence is obtained.

Finally energy is expressed as

2

E=E+E—(dn

—i dn)

e h

Where j 7, aresingle particle wavefunction obtained at the nth stage.

(5.56)

(5.57)

(5.58)
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Chapter 6 Superlattices

A superlattice is a semiconductor structure created in such a way that periodicity is
imposed on the system during growth. This periodicity typically ranges from tens
to thousands of angstroms, so that it includes at least a few periods of the natura
crystal structure, but issmall enough sothat quantum effects are important. These
are thus mesoscopic structures. A simple example is a compositiona superlattice,
consisting of periodically aternating plane layers of, say, AlGaAs (A) and GaAs (B)
(Fig. 6.1). The electronic periodicity is provided by the aternation of the conduction and
valence band edges, as shown in Fig. 6.2. A superlattice creates a new kind of electronic
raw material. The fact that it is a grown structure means that there is great freedom in
creating amaterial with new sorts of electronic properties

w E
W =
« = —_——
5 | =
Al
% Ev
: -
-y
. dp
" d=dp+d}

Figure 6.1 The aternating band edges provide aperiodic array of quantum wells
for electrons ( E.) and holes (E, ).
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Figure 6.2 Band edges and miniband energies for a typical superlattice, with alternating
layers of GaAs (wells) and Alg1; Gagge As (barriers). For thiscase d; =d, =90 A.
Miniband energies are E; = 26.6 meV and E, =87 meV and respective bandwidths are
AE; =2.3meV, AE, = 20.2 meV.

6.1 Superlattices and Multi-quantum-wells

When a superlattice contains widely spaced quantum wells, so that electron tunneling
from well to well is essentially prohibited, one can treat the array as a set of isolated
guantum wells. The energies and wavefunctions of electrons in each well will then be
determined just by the properties of an individual well. Such arrays (multi-quantum-
wells) are often used to enhance the signa obtainable from a single well. A  true
superlattice isa similar system, but with thinner barriers (more closely-spaced
wells), so that there is electron tunneling, and therefore good communication, from
well to well. Some typical parameters are shown in Fig. 6.2.

There are two different ways of looking at a superlattice which are illuminating, and
taken together giveagood picture of the system. The first of these is the picture of a
superlattice as a single bulk crystal with an additional modulation (periodicity) imposed
on it. The second is the picture of a collection of equally- spaced quantum wells which
are brought progressively closer together.

Crystal periodicity leads to the electron band structure observed in bulk crystals.
Superlattice periodicity likewise gives a band structure, for the same reasons. However,
since the superlattice spacing isgreater than the crystal spacing, the superlattice k-
space dimensions will be smaller than those of the crystal. This new band structure will
be superimposed on the original bulk band structure, and will show up as a series of
minibands and minigaps which will be superposed on the original band structure of the

well material. These minibands and aans result from zone foldina; for a superlattice in



superlattice constant in this direction which is M times the atomic one.
Associated with this new periodicity, therewill be a new superlattice Brillouin zone
with a size of /M times the crysta Brillouin zone. It is often the case that

1M «1, so tha many of the new mini-zones will fit into the original Brillouin

zone. Thus, the band structure shows its new periodicity by breaking up into
minibands and minigaps whose scale is determined by the size of the superlattice
layers. Figure 6.3 illustrates this situation near the conduction band minimum of the well

material, where the band structure can be taken to be parabolic to a good approximation.
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Figure 6.3 Formation of minibands and minigaps near the conduction-band minimum of a
direct-gap semiconductor. The minizone width 2r/distypically much lessthan the Brillouin
zone width 2r/a, where ais alattice constant.

One can aso consider superlattices as collections of identical, isolated quantum wells
which are brought closer together in such a way that they remain separated by equal
distances. Each single well has its own set of discrete energy levels from electron
confinement in the z-direction. If, for instance, one had started with only two such wells
separated by a very large distance, there would be some common energy E;, say, which
an electron could have by being in one well or in the other (a two-fold degeneracy). As
these quantum wells are brought closer together, interaction between the wells
becomes possible, so that the levelsare no longer degenerate, but have energies
(E1 + A) and (E; — A), where A increases from zero as the barrier width decreases.
In place of a single degenerate level, one now has two levels, dightly split. The
communication between wells causing this splitting comes about because of the fact that
an electron confined in one well can really be present in the barrier region as well, with

a small probability. If the second well is near enough, the electron can also penetrate



eigenstates of a two-well problem. In each, the electron has equal probability of being
in either well, and the wavefunction is symmetric or anti- symmetric, in the state with

energy (E; + A) or (E; — A), respectively.

Since the energy splitting A is bigger if the amount of communication between wellsis
greater, one finds that the splitting of a higher-energy level E, > E; will be greater than
that of alower level. Higher-energy states have a higher probability of being present in
the barrier regions: they have longer tails and thus can ‘see’ the presence of other wells
more effectively. This in turn follows from the fact that, since the energy of such states
is higher, the effective barrier V— E through which they have to tunnel is lower.

Bringing many (N) identical wells together has a similar effect. In this case, a single-
well level E; will be N-fold degenerate when the wells are far apart. Asthey are brought
closer together in a uniform fashion, this degenerate level will split up into a set of
closely spaced levels (N of them). This set of levels can be thought of as a continuum -
aminiband. One will have other minibands, corresponding to each of the original levels
of the single well. Asin the two-well case, one expects higher-energy minibands to have
a greater bandwidth than lower-energy ones. This can be a dramatic effect, as indicated
in Fig. 6.2. One can say that level broadening increases as tunneling becomes more
effective.

Miniband broadening is aso indicated in Fig. 6.4, which shows the effect on the density
of states, for a set of square wells (as in Fig. 6.2) brought close together into a
superlattice structure. Note the minibands (a—b), (c—d ) and mini- gaps (b—c), and

the increase of the bandwidth with miniband energy in Fig. 6.4.
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Figure 6.4 Superlattice density of states (DOS) in relation to that of a3DEG and of a2DEG in asguare
quantum well.



Miniband Properties: The WK B Approximation

The WKB model can give good physical estimates for superlattice properties, if the
system has relatively thick barriers. It also tends to give better than expected results

for more general systems.
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Figure 6.5 Model of asuperlattice potential, with N equally-spaced, equivalent quantum wells

Consider the N-well system shown in Fig. 6.5. When one treats this problem in the

WKB approximation, certain basic ingredients emerge:
by
s :jk(z)dz (6.1)
a,

(anintegra over the allowed energy region in, say, the nth well), with

1 2
k=={em*[E-v (2)]}" (62)
and
8n.1
t = _[k(z)dz (6.3)
by

(anintegra over asingle forbidden barrier region), with

1. 1 (Aca s/ |——|):I/2 I~



Here, we want to describe the motion of an electron with energy E in a system with,

say, the classical turning points a, and b,. As aways, the confinement, and the

requirement that the wavefunctions match at the classical turning points, results in

guantization conditions, which may be written

S = (n +1jp +e! cos(ﬁ) (6.5)
2 N+1

where n=1,2,...and m=212,...N The first term on the right-hand side of (6.5) is the
WKB approximation to the energy levels (labeled n) of an isolated well. The second

term describes how these single levels split into N sublevels (labeled m), thus forming a
miniband. Thisterm is small because of the exponentia in—t , so that the sublevels are
closely spaced. Assuming such a small splitting of levels, one obtains from (6.5) the

guantized energies

E =E° +h_We‘t ” cos[%j (6.6)
P +

Here, E? isthe zero-order energy (coming from the first term on the right in (6.5)) and

% is calculated us ng the approximate energy E° in the definition (6.3). Finaly, w,

the frequency of classical motion in a single quantum well, is defined by

*

b,
p m dz
—=— (6.7)
Wk !ﬂk(o)(z)

where k@iscalculated from (6.2) using the approximate energy E°.

These results give, among other things, the WKB approximation for the mini-band
width, which may be read off from (6.6). Since2cos(p/N+1) is the maximum
difference between the highest and lowest values of cos(nmp/N+1), when m=1,2,...N

we obtain the bandwidth

n

AE, = F;—Wet [2cos(p/N+1)] (6.8)

From this equation one can see how the bandwidth depends upon the single-well energy
level n from which that miniband arises. This dependence enters into the parameters w
and t of equation (6.8). The latter is by far the most important dependence, because it

appears as an argument of an exponential. Explicitly, one has that
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t©= %T{Zm* [V(2)- E]}“ dz (6.9)

It isevident that t'® will besmaller (and the bandwidth greater) when E, is

greater (i.e. nearer to V). In this case the effective barrier V — E is lower, and thus
the integrand in (6.9) is smaler. As shown in Fig. 6.6, a second effect usualy
operates to increase the bandwidth with increasing n. The higher-energy states see a
barrier which is also thinner, since at higher energies the limits b and a are often closer

together. Communication between wellsisof course aided by thinner barriers.
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Figure 6. 6 A single well and barrier, for the superlattice of Fig. 6.5. E; and E; are
unperturbed WKB energiesfor asingle well with infinitely thick barriers.

6.2 Doping Superlattices

From what has already been said, it should be evident that a superlattice can be
created by imposing a new periodicity of any sort on a semiconductor. One such
example is the doping superlattice, first proposed by Dohler (1972) (see also Ruden and
Dohler, 1983). The idea is to introduce a new periodicity into a semiconductor by
doping it selectively, first by acceptors, then by donors, in repeated plane layers, as it
is grown. The ionized impurities create repeated layers of negative (n) and positive (p)
space charge inthe conductor (Fig. 6.7), often separated by intrinsic (i), or undoped,
layers. The periodically repeating electric fields which result create a superlattice in
the semiconductor which, for obvious reasons, iscaled a n-i-p-i superlattice.

Figure 6.8 shows how such fields create a superlattice. The electric field of the ionized



previous chapter, while a parabolic well for holes (an inverted parabolad) is created in

the p-type regions.
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Figure 6.7 (a) lonized impurities introduced in aternate layersin a semiconductor. (b)
Possible doping profile leading to the space charge shown in (a)
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Figure 6.8 Conduction and valence band edges in a semiconductor with n-i-p-i-type
doping. Ege« iStheeffective band gap.

The charge density of the impurities may be written as
ro(2)=¢[ny(2)-n,(2)] (6.10)
wheren, isthe number of donors per unit volume, n, isthe number of acceptors per

unit volume and z is the growth direction. The band-edge potential V,(z)is easily

calculated from Poisson’s equation:

e2
Vo(z)z(zee nD]z2 (6.11)
r=o
for Os|z|§%dn,and
e 1 2
Vo(z)=2vo—(2ere0 nA)(Ed—|z|j (6.12)

for %d—|z|s|z|s%dp , Where we have set V =0 at the origin, which is taken to be the

middle of an n-type layer, and spacings d, etc. are defined in Fig. 6.7. In the intrinsic

regions, where there are no ionized donors, the potential must be a linear function of z

We assume that this basic pattern is repeated indefinitely. The quantity 2v,in equation



conduction band edge must be continuous (as shown), the parabolic regions in
(6.7) and (6.8) must be joined by straight lines. This determines the depth of the

modul ation:

& 1, Y 1, Y
2V, = n,|=d | +n,| =d_| +n.d.d 6.13
0 Zereo D[Z n) A[Z p) D™ n™i ( )

Note that if the total number of ionized donors in one n-layer equals the number
of ionized acceptors in a p-layer, the electrons that have been released by the donors
will al reside on acceptors if the system isin its ground state. Thus, the potential that a
free electron would feel is indeed given correctly by equations (6.11)—(6.13). There

will be no free electrons in the wells to modify this potential with self-consistent effects.

The WKB approximation can be applied to the parabolic parts of n-i-p-i quantum
wellsto predict the superlattice energies. In particular, the miniband splittings and
miniband widths can be calculated, as described above. The unperturbed energies

(those for isolated wells), in particular, are given by

n

EO = (n + %j hw (6.14)

where, as before, wgiven by (6.7), the miniband splittings by (6.6), and the
miniband widths by (6.8). The calculation of these quantities is straightforward, but

sincetheresulting expressions are rather unwieldy, they will not be reproduced here.

6.3 Delta-doped n-i-p-i s

A delta-doped n-i-p-i is essentially one in which the dopant layers are each only one
atom wide. The resulting band-edge diagram is shown in Fig. 6.9, for n and p layers
with equal numbers of ionized impurities. In this case, the conduction band edge is
given by

e’D

V, = 2e,eo|z|’ |z|s%d,....andrepeating (6.15)

where D is the number of ionized donors (or acceptors) per unit are, and the superlattice

amplitude isgiven by
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The WKB approximation can be used here, too, to obtain predictions for the
properties of this superlattice, in the way aready described; in particular the

miniband parameters w'” and t ” are obtained in an analogous manner.

di2 d
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Figure 6.9 Conduction and valence band edges for an-i-p-i superlattice with equally- spaced n
and p deltalayers of equal strength.

6.4 Compositional and Doping Superlattices

For electronic devices, one of the most important semiconductor parameters is the value
of the energy gap between the valence band maximum and the conduction band
minimum. Many applications, particularly those that depend on optical properties,
depend crucially on the value of the fundamenta gap. One would like a wide range
of effective band gaps, Eg e, for device use. The fundamental gap E; isindeed modified
in compositional quantum wells and superlattices, asis shown in Fig. 6.10. Once such a

system is grown, its effective gap will be greater than Ey, and will moreover be fixed.

Ec

EgI Eg.et'f




Figure 6.10 Mo dification of the fundamenta gap in an AlGaAs-GaAs quantum well.

To obtain effective band gaps smaller than Ey , one must turn to something like a n-i-p-i
system. Fig. 6.11 shows how different effective band gaps can be obtained using the
same host material, with the same periodicity, but with different doping densities. From
eguation (6.16), the superlattice modulation is proportional to the product Dg. A small
value of D results in a weak modulation of the band edge (Fig. 3.35(a)), and gives an
effective gap not much smaller than that for the bulk semiconductor. The effective
gap decreases, however, as doping strength D increases (b); and at high doping,
as in (c), a semi-metal can result. The same principles hold for other doping

superlattices.

Figure 6.11 shows the case of a doping superlattice in which there is complete
compensation: the numbers of donors and acceptors are equal. Since the system is
assumed to be in its ground state, al donated electrons reside on acceptors. Once such a

system is grown, however, there is aso freedom to tune it. Figure 6.12 shows such a
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many-subband doping superlattice in its ground state, with no free carriers.

(a)

ic)

Figure 6. 11 Delta doping superlattices with (a) wesak, (b) moderate, and (c) strong dop- ing
densities.

Electrons and holes are confined to separate regions of the superlattice (this is
sometimes said to be a system with an “indirect gap in real space”). One can now excite
this system, for instance with light of the right frequency, to create electron-hole pairs.
Free carriers have now been introduced into the system. Electrons will be attracted to the
guantum wells in the n-layers, and holes to the p-layers. Since these regions are well
separated in space, however, the electron and hole wavefunctions will be well separated.
This small overlap means that electron—hole recombination will be very slow. Thus
there will be an appreciable time during which these free carriers will reside in their
respective wells, where they will screen the space charge already present. The net effect
will be to reduce the superlattice modulation, and thus increase the effective band gap

(Fig. 6.13).



Figure 6. 12 A doping superlattice initsground state.

Figure 6. 13 A doping superlattice initsexcited state.

6.5 Other Types ofSuperlattices

Compositional superlattices of the GaAg/AlGaAs type, with low Al composi- tions,
are caled Type | superlattices. Materials such as the InAs-GaSb system offer a



different possibility: the Type Il superlattice. In Type Il superlattices, electrons are

confined to one material and holesto the other (Fig. 6.14).

Well for
electrons

Byrr=n=  poooos

GaShb InAs well for

holes

Figure 6. 14 Schematic band-edge diagram for a Type Il superlattice.

Strained-layer superlattices are compositional superlattices in which the constituent
materials are not perfectly lattice-matched to each other. If the materials are not too
different, and if the layers of each material are not too thick, good growth of one
material on another, in layers, is still possible. A given layer will then be compressed,
or extended, in the plane perpendicular to the growth direction, by atomic forces
arising from the layer onto which it is trying to grow. The effects of strain can also be
useful. It breaks the degeneracy of hole states, and changes the band structure in other

ways, al of which offer new possibilities for device development.

Any way of imposing an artificial periodicity on a semiconductor system can in
principle make a superlattice. The periodicity does not need to be imposed on the
growth direction of alow-dimensiona system. One superlattice of interest, for instance,
is made by shining a laser interference pattern onto an aready-created 2DEG. Extra
electrons are generated (for instance in the surrounding medium) by the light, in a
periodic way, thus creating a periodic electric field which modulates the 2DEG in its
own plane. A similar way of modulating an existing 2DEG is with the help of acoustic
waves. Here, the modulation is caused by the periodic electric field which is generated

by the piezoel ectric effect.



Still another kind of superlattice can be created using a regular array of closely spaced
guantum dots. In this case, an artificial periodicity will be created in at least two
different directions.
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Chapter 7 Phonons

One of the central themes of this book is how reducing the size of semiconductor structures
down to mesoscopic and smaller scales brings the quantum wave nature of electrons into play,
resulting in electronic and optical properties which are markedly different from those of
bulk semiconductors. One of the key challenges facing physicists and engineers is how to make
devices operate at room temperature. The main obstacle to achieving this goal is the unavoidable
presence of phonons, the quantum vibrations of atoms making up a solid, and their ability to

scatter € ectrons.

Phonons would thus appear to occupy an uncomfortable position in the study of low-dimensional
structures, with an understanding of their properties required solely for the purpose of finding
ways to reduce their interaction with electrons. As we shall see in this chapter, however, the
physics of phonons in low-dimensional structures is sufficiently fundamental and non-trivial to
be of interest in its own right. Just as for electrons, phonons can be confined within
heterostructures and we would like to know how the dynamics of low-dimensiona phonons
differs from that of bulk phonons. We would also like to understand the effects of
dimensionality on the electron-phonon interaction and hence such electron transport properties

as the phonon-scattering-limited mobility.

In fact, finding ways to reduce the electron-phonon interaction is not the only reason for
investigating phonons in low-dimensional structures. Being the vibrations of atoms making
up a structure and given their interaction with electrons, phonons have proved to be an
effective probe of the eectronic and structural properties of low-dimensiona
semiconductors. Two such probe techniques are acoustic phonon pulse spectroscopy and Raman
spectroscopy. Phonon pulse spectroscopy relies on the fact that acoustic phonons with
wavelengths on the order of severa hundred angstroms can travel for relatively large
distances in semiconductor crystals without scattering. By detecting the flux of acoustic
phonons emitted from an electron gas heated above the lattice temperature or,
aternatively, measuring the response (e.g. conductance) of an electron gas due to the interaction
with an incident beam of acoustic phonons, information about the electron gas can be obtained.
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For example, phonon pul se spectroscopy can be used to study the electron current distribution of
atwo-dimensional electron gasand more complicated electron states. Acoustic pulse methods
have also been used to study the materias properties of semiconductors, such as surface and
interface roughness. Raman spectroscopy has proven to be an extremely powerful probe
of thedynamics of phonons in heterostructures. This method takes advantage of the fact that
energy conservation requires a photon which absorbs or emits a phonon to suffer achangein its
frequency. This frequency change is called the Raman shift. By measuring the intensity versus
Raman shift of laser light which is inelastically scattered from a solid, the energies and, hence,
the frequencies of the alowed phonon modes of the solid can be measured. Since the phonon
frequencies are determined by the interatomic forces and atom masses that comprise a
material, Raman spectroscopy can be used to infer various materids properties of
heterostructures.

However, before going on to study the various phonon spectroscopies and their interpretation in
terms of heterostructure properties, we should first learn about the basic physics of phonons

and electron-phonon interactions in heterostructures. Thisisthe purpose of the present chapter.

7.1 Phonons in Heterostructures

In the classical approximation, the vibrations of the atoms making up a crystalline solid are

most conveniently described by the function G;(ﬁ,t) which gives the displacement from

the equilibrium position at time instant t of the j-th basisatom in the unit cell located
a R=na+na +nas. The displacement is specified by its magnitude and direction and
thusisavector. The displacement of agiven atom asafunction of time will be governed by its
interaction with all the other atoms making up the solid. Because of the non-linear nature of the
full equations of motion and the very large number of atoms involved, it isin practice impossible
to find solutions for the atom displacements without first making some simplifying
approximations. The most common approximation is to expand the interaction potential energy
in the displacements and keep only terms to quadratic order. (Note that linear order terms vanish

since the displacements are defined with respect to the equilibrium positions of the atoms.) The
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equations of motion are then linear in the displacements and we have the important result that
any solution can be expressed as a sum of solutions with the property that all atoms vibrate at

the same frequency:
u; (ﬁ,t)z Re[aneiWatﬁja (ﬁ)} (7.1)

Because of the latter property, thisis called the harmonic approximation.
Thus, to understand the classical dynamics of atomic vibrations in a crystalline solid, it is
sufficient to find the single frequency solutionse™‘uja (ﬁ) the so-called normal modes. The

guantum dynamics and interpretation in terms of vibration quanta — phonons — then follow

directly. For example, the total energy of a crystal in a given quantum state is

E=> hw, (Na +%j (7.2)
where N, isthe number of phonons present of mode-type a .

This picture of the dynamics, involving the concepts of classical normal modes and quantum
phonons, is valid provided the higher order non-quadratic terms in the potential energy
expansion - the anharmonic terms - are much smaller than the quadratic terms. Physicaly, this
means that changes in the distances between neighbouring atoms due to their vibrations are small
compared with their equilibrium separations. This is the case as long as we are well below
melting temperatures, as we indeed are for the low-dimensional structure physics and
applications discussed in this book. However, that the presence of even small anharmonic terms
will mean that these phonon modes have only afinite lifetime.

7.2 Superlattices

To gain some idea of the nature of phonon modes occurring in heterostructures, we shall focus

our discussion on the modes of a special type of heterostructure - the superlattice.
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As an illustrative example, we consider a superlattice formed from alternating GaAs and AlAs
slabs. Both GaAs and AlAscrystals have zincblende structure and thus a superlattice grown
on an (001) face of a GaAs crystal substrate will comprise aternating layers of atoms of a
single species with amonolayer spacing equal to half the lattice constant. The lattice constant of
GaAsis5.65 A, while that of AIAsis5.62 A, so that the respective monolayer spacings are 2.83
A and 2.81 A.

One class of modes which occurs in such a superlattice involves the vibration of entire (001)
planes of atoms inthedirection normal to the planes, i.e. the [001] direction. These are called
longitudinal modes. Because the atoms in a given monolayer are all moving in unison, we can
model the superlattice by using a one-dimensional system. Further simplifications follow if we
make the harmonic approximation and include only nearest-neighbour interactions between
atoms.

GaAs AlAs GaAs

u (na) nginu}
—i —

OANGANOMNNGAMAADA LA O A ON -G OGO

m, m,

| L4 | Ly |
I I LB [ I'I'I I

0 a na (n+1)a Na

@) © o

Asg Al Ga

Figure 7.1. Linear chain model for [001] longitudina modesin a GaAs/AlAs superlattice. The
atoms are shown in their equilibrium positions.

The resulting dynamics is identical to that of a mechanical system consisting of a chain of
masses connected with springs (Fig. 7.1). As we shall now see, this linear chain model gives a

reasonably good description of the [001] longitudinal modes.
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In the GaAs or AlAs dlabs, the equations of motion take the form

m ddzt‘jl (na,t) =k {2u,(na,t) - u, (nat)-u,[ (n-1)at ]} (7.3)
m, ddil;z (nat) =k {2u, (na,t)-u, (nat) -y, [ (n+1)at ]} (7.4)

where a is the monolayer spacing (i.e. the unit cell length), k is the force constant and

U, (na,t) denotes the displacement from equilibrium along the line of the chain at time t of one

of the two atoms of mass m; and nt, in the unit cell located at na. To obtain solutions for the
entire chain, these equations must be supplemented by certain conditions on the
displacements at the boundaries between GaAs and AlAs slabs. However, before we consider

these full solutions, let usfirst addressthe simpler problem of a singleslab with periodic

boundary conditions. Substituting the trial mode solution u; (na,t)= A exp[-i(wt—gna)],

q=2p/l , into equations (7.3) and (7.4), we find that we can have anon-trivia solution

(i.e. A = 0) only if the determinant of the coefficients of the two unknowns A; and A, vanishes.

Thisresultsin the following relation between the angular frequency w and wavevector g:

2

w? = m{ml +m, + [mf +m?+2mm, cos(qa)]m} (7.5)

The mode angular frequency dependence on wavevector is called the dispersion relation and
the two roots in (6.5) are the branches of the dispersion relation. Before we can display the
dispersion relations for GaAs and AlAs, we must determine their force constants. This can
be done, for example, by measuring w at g = 0 using Raman spectroscopy and then fitting the
positiveroot at g =0in (7.5) to the measured value of w. For GaAs, thisgivesthevalue k =
90.7 N/m, whilefor AIAswe obtain k =95.4 N/m. InFig. 7.2 we show the resulting dispersion
curves for GaAs and AlAs. In fact, they are a set of discrete points a& g=+2pn/Na,
forn=0, 1, 2, ..., where N is the number of monolayers. Altogether there are 2N distinct
modes, N for each branch. Following the usua convention, the angular frequency has been
divided by the factor 2pc, where cisthe speed of light in vacuum (3 x 10, cm s*). This

has the advantage that the Raman shift wave-number corresponding to a given phonon
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mode can be inferred directly from the plot in Fig. 7.2. To convert to electron-Volts (1leV =
1.6 x 10™ J), the wave-number value is multiplied by the factor 1.24 x 10* eV cm. For a mode
in a GaAs or AlAs positive root branch, we see that the Raman shift will be in the infra-red
range. For this reason, the positive root branch is called the optical branch. The negative root

branch extends down to zero frequency as q goes to zero and thusiis called the acoustic branch.

------
-----
-----

----

300.0 |

w {cm'1]

q (rlai)

Figure 7.2 Longitudinal [001] acoustic (LA) and optical (LO) phonon dispersion curves for
GaAs (solid line) and AlAs (dashed line).

If we expand the dispersion relation (7.5) with respect to q and keep only the lowest-order

non-vanishing terms, we find for the optical branch:

1/2
W{M} 7.6)
mm,

and for the acoustic branch:
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Thus, as q approaches zero, the optical group velocity v, =dw/dqvanishes, while the

acoustic group velocity becomes constant and non-zero, coinciding with the acoustic
phase velocity s=w/q. To determine how the atoms move for smal g, we require the

remaining part of the solution to equations of motion (4.3) and (4.4), namely the relation

between the constants A; and As:

B k(1+e‘qa) g
A AL__W (7.8)

Substituting expression (7.6) for w into (7.8), we find that for q tending to zero, the optical
modes approach a standing wave with the Ga and As(or Al and As) atoms vibrating 180°

out of phase: A)/A; = - my/my,. For the acoustic modes all the atoms vibrate in phase.

Substituting the force constant values given above into (7.7), we have a prediction for the small-
g group velocity of longitudinal acoustic (LA) phonons propagating in the [001] direction. For
example, for GaAs we obtain the value 4040 m s*, whereas the actual value is about 4770
m s® and therefore the linear chain model prediction isout by about 15%. This is quite
reasonable given the simplicity of the model. A more accurate linear chain model will take into
account interactions between next-nearest neighbor atoms as well, with the new
unknown force constants determined by fitting to additional measured frequencies. The
existence of a non-negligible acoustic group velocity givesrise in heterostructures to arange of
acoustic phonon transport phenomena and, as mentioned, makes possible the field of acoustic

phonon pul se spectroscopy.

Our discussion so far has been about the longitudinal [001] modes of asingle GaAs or AlAs slab.
Let us now consider the longitudinal [001] modes of the full GaAS/AlAs superlattice structure.
An initial, basic understanding of the superlattice modes can be gained just by comparing the
single-slab GaAs and AlAsdispersion relations (Fig. 7.2). The acoustic branches of AlAs and
GaAs overlap in frequency and therefore the acoustic modes will extend throughout the entire
superlattice. On the other hand, the AlAs and GaAs optical branches do not overlap in
frequency - a consequence of the large difference between the Gaand Al atom masses -
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and hence we expect the superlattice optical modes will be confined either to the AlAs or
GaAs dlabs. An estimate of the extent to which an optical mode is confined to a given slab can be
obtained by considering the imaginary wavevector solutions to the single-slab equations of
motion (7.3) and (7.4). We find that optical modes confined to the GaAs slabs extend between
about 1 to about 0.3 to 0.4 monolayers into the GaAs slabs, where the lower and upper limits are
for zone centre (g=0) and zone boundary (q = £p/a) modes, respectively. Thus the superlattice

optical modes are well-confined.
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Figure 4.3. Dispersion curve for [001] longitudina phonons of a superlattice comprising
aternating 4-monolayer dabs of GaAs and 3-monolayer dlabs of AlAs. Also shown for
comparison arethedispersion curvesfor bulk GaAs and AlAs (dashed lines).

The superlattice dispersion relation and mode solutions are determined by first constructing
solutions in a single superlattice unit cell (which comprises an AlAs and GaAs slab) and then
using Bloch’s theorem to extend the solutions throughout the whole superlattice. In Fig. 7.3,
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we show the longitudinal [001] dispersion relation for a superlattice with 4-monolayer GaAs
slabs and 3-monolayer AlAs slabs — a (4, 3) superlattice. Also shown for comparison are the
single-slab dispersion relations. A single slab with periodic boundary conditions has period a,
the monolayer spacing, while an (M, N) superlattice has alarger period d = (M + N ) a (where we
regard the AlAs and GaAs monolayer spacings to be the same). Thus, the superlattice Brillouin
zone (boundaries at q = +p /d ) is smaller than the slab Brillouin zone (boundaries at g = £p /a).
Notice that the part of the dispersion curve below about 200 cm™ can be approximately obtained
by “folding” the bulk acoustic phonon branches into the smaller superlattice zone. For this
reason, this part of the dispersion curve is called the folded acoustic phonon branch. A Raman
spectrum of a superlattice is shown in Fig. 7.4, which gives clear evidence of folded LA

phonons in the form of double peaks occurring at the predicted frequencies.
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Figure 7.4. Raman spectrum of asuperlattice comprising aternating 42 A GaAs slabsand 8
A Al0.3 Ga0.7 Asdlabs . Theinset shows amodel calculation of the folded acoustic branch as
well asthe location of the observed peaks.

Severa other types of mode can occur in the GaAs/AlAs superlattice. For example, the (001)
planes of atoms can also freely vibrate in the [110] direction, transverse to the direction of
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propagation. Another type of mode which can arise are the interface modes which are confined
to the regions of the interfaces between the GaAs and AlAs slabs. These various mode-types will
also occur in GaAg/AlAs superlattices grown on other GaAs substrate faces and also in

superlattices made from other alloy materials.

Although heterostructures such as quantum wells, wires and dots lack the layer periodicity of
the superlattice, the basic features of the phonon modes are the same. For example, in a
guantum well formed by sandwiching a GaAs dab between two AlAs dlabs, the optical
modes will be confined either to the GaAs or AlAs dlabs, while the mgjority of the acoustic

modes will extend throughout the whole structure. Interface modes will also occur.
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Chapter 8. Optical Properties

Recent progess in epitaxial growth techniques has promoted the use of semiconductor
heterostructures in optoelectronic devices. The physics of these materials relies upon the
similarity between the electronic band structures of the different semiconductors. If the bulk
band structures are sufficiently similar then changes in composition can be represented primarily
as changes in the band splitting and other bulk parameters. In a direct band-gap semiconductor
(where minimum of conduction band coincides to maximum of valence band in k-space (Figire
8.1) ) an abrupt change in composition from wide to narrow band gap results in a

discontinuity in the conduction and valence band profiles in the growth direction.

E E
A A
E .\ Indirect Bandgap, E
< £ CB ’
Direct Bandgap = \/k E
{ -
E Photon W—F/ I]—~
iy ayesas=E ¥
VB /
VB Phonon
e > k —+* > k
(a) GaAs (b) Si

Figure 8.1 (a) direct bamd-gap semiconductor; (b) indirect band —gap semiconductor. In direct
band-gap semiconductor E(k) dispersion relation for conduction band  has the minimum at the
same value of k, where valence band dispersion relation has the maximum. In indirect band-
gap semiconductor optical transition between the conduction and valence band is much less
probable because it is simultaneous conservation of energy and momentum is impossible if only
electron and photon participate in transition process

139



The heterointerface so formed is Type | or Type Il, depending on the band-gap alignments,
determined by the conduction band offset (Fig. 8.2).

Type I Type Il

Figure 8.2 Typel and Type Il heterointerfaces.

A quantum well (QW) is made by growing a thin layer - typically a few nanometres (nm) or 10s
of nm - of narrower gap material within awider-gap semiconductor, where the inserted layer
is thin enough to cause quantum confinement of the carriers. QWs are similarly classified as
Typel or Il indirect-gap materials (Fig. 8.3).

rt: rt'r

Type 1 Type 11

Figure 8.3 Typel and Type Il quantum wells.

140



In indirect gap materials (where minimum of conduction band does not coincide to maximum of
valence band in k-space) we need to consider the band-edge discontinuities at different pointsin
the band structure. The AIASGaAs heterointerface, for example, is Type | a the point but
Type Il at the X point (Fig. 8.4). The overall band structure of an AIAS/GaAs QW system thus

depends on the relative well and barrier widths.

AlAs GaAs AlAs GaAs

hh

Figure 8.4Conduction and valence band profilesin AIAS/GaAs at the point and the X

In a multi-quantum well (MQW) system a series of QWSs is separated by layers of wider-gap
(barrier) material thick enough to isolate carriers in the wells (Fig. 8.5). A regular MQW
with a barrier thin enough to alow carrier communication between the wells is known as a

superlattice (SL).

The choice of materials for heterostructures is influenced by lattice spacings as well as by the
symmetry of the crystal band structures and differences in the effective band gaps (Fig.
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8.6). Strain forces at the interface between materials of very different lattice constant may
produce imperfections which degrade the materia and interface quality. However, in a small-
period SL the thin layers may accommodate the alternating strain forces to produce useful
heterostructures where the potentia wells in different crystal bands are distorted by
strain (Fig. 8.7).
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Figure 8.5 Multi-quantum well band profiles.
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Figure 8.6 Room temperature band gap E, versus lattice constant for the main binary 111—
V semiconductors. Tertiary alloys are represented by the lines joining relevant binaries.
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Figure 8.7 Dispersion relationshipsin bulk 1nGaAs and in strained
GaAd1nGaAs.
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8.1 Optical Absorption

The absolute magnitude of the absorption for asingle QW is low: approximately 1% of the light
is absorbed on the step above the first light-hole and first heavy- hole transitions. This means
that direct absorption measurements are difficult to perform except for systems with many
QWs. Alternative methods of probing the absorption spectrum are photocurrent (PC) and

photoluminescence excitation (PLE) spectroscopy.

In a photoconductivity measurement the QW sample must be contacted (typically as a p-i-n
device) so that a bias may be applied. The QW is then illuminated with monochromatic light of
frequency w and asmall biasis applied to remove carriers photogenerated in the QW (Fig. 8.8).
The photocurrent collected at the contacts, when measured as a function ofw, reflects the QW
absorption, but only to within a factor representing the quantum efficiency for escape from the
well. At low temperatures, or in deep wells, this factor may vary significantly with the
excitation energy and produce an unreliable picture of the relative absorption strength,
though not of the positions of features. Another difficulty with this technique, particularly
when dealing with wide wells, arises from the Stark shift- ing of the subband edges by the
applied bias.

Figure 8.8 Measurement of photoconductivity.
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Photol uminescence excitation spectroscopy may be used to study uncontested samples. InaPLE
measurement, the QW is illuminated by light of frequency wand a detector is fixed at an
energy just below the effective absorption edge (the first electron-heavy-hole exciton). As the
energy of the incident light is varied, electrons are promoted from the valence band to the
conduction band according to the absorption strength. Carriers first thermalize rapidly to
their respective band edges and then recombine slowly by radiative recombination across
the band gap (Fig. 8.9). The PL signa will thus vary with w in harmony with the strength of
the absorption (Fig. 8.7). PLE will be more reliable for states close to the absorption edge,

where carriers are less vulnerable to remova by other mechanisms.
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Figure8.9. Photogeneration and recombination of carriersin aquantum well in
photo- luminescence excitation.
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Figure 8.10 Photoluminescence excitation spectrum of an 8.4 nm Alp s Gags; AYGaAs
multi-quantum well at 11 K. Aswel asthe main transitions between subbands of the same
order (el—hhl, el—Ihl and e2—hh2) the exciton for the optically weak el—hh3 transition can be
seenatl.65eV.

8.2 Features of Optical Spectra

The peculiarities of optical spectrum of nanostructures will be discussed at the example of
colloidal quantum dots. Colloidal 11 -VI semiconductor nanocrystals or quantum dots (QDs) have
at aimed a great research focus due to their advantages in optical properties including tunable
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emission spectra, high photostability, resistance to photobleaching and control able surface
characteristics. CdSe Qds find a wide range of applications in optoelectronic devices, photo
catalysis, solar energy conversion and biological imaging and labeling. The main property of
CdSe QDs is optical property. The nanoparticles are a bridge between bulk materials and atomic
or molecular structures. A bulk material should have constant physical properties regardless of
its size, but at the nano-scale this is not the case. The properties of materials change as their size
ap roaches the nanoscale and the percentage of atoms at the surface of a material becomes
significant. The size of the nanoparticles is finte, so the continuous energy band of the bulk
crystal transforms into a series of discrete states. The nanoparticles frequently display
photoluminescence and sometimes display electroluminescence. It is well known that the
guantum confinement effect modifies the electronic structure of nanocrystals when their
diameter is comparable to or smaller than the diameter of the bulk exciton.

As mentiond, quantum dots are nanoparticles of semiconductors materias ranging from 2 to
10nm in diameter, like CdSe and ZnS. There electronic characteristics are closely related to
the size and shape of the individual crystal. If the size of crysta is small , then band gap
between the higher valence band and the lowest conduction band becomes high and more energy
isrequire for exciting the dot and consequently, more energy is released when the crystal returns
to its resting state. A principal advantage with quantum dots is that by controlling the size of
crystals, the conductive properties of the material is controlled. Because of their small size,
guantum dots displays unique optical and electrical properties. The most immediately apparent
of these is the emission of photons under excitation, which are visible to human eyes as light.
The wavelength of these photon emissions depends not on the material from which the quantum
dot is made, but its size. The ability to control the size of quantum dot enables the manufacturer
to determine the wavelength of emission, which in turn determines the color of light the human
eye perceives. The smaller the dot, closer it is to the blue end of the spectrum and the larger the
dot, closer to the red end as shown in Fig 8.11. When the size of the quantum dot is smaller than
the critical characteristic length called the exciton. In Bohr radius, the electrons crowding lead to
the spliting of the original energy levels into smaller ones with smaller gaps between each
successive level. The quantum dots that have radii larger than the exciton Bohr radius are said to
be in the “weak confinement regime” and the ones that have radii smaller than the exciton Bohr

radius are said to be in the “strong confinement regime”.
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Figure 8.11 Different size quantum dots emitting light at different frequencies.

The fluorescence of the quantum dots is a generated when valence electron excite with a certain
energy and they emits energy in the form of photons as the excited electron returns to the ground
state, combining with the hole. The energy of the emitted photon is determined by the size of the
guantum dot due to quantum confinement effects. The energy of the emitted photon is sum of the
band gap energy between occupied level and unoccupied energy level, the confinement energies

of the hole and the excited electron, and the bound energy of the exciton as shown in Fig 8.12.
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The electronic state is an important property and can be described in terms of valence and
conductivity bands and a gap between these bands. However, as the particles become smaller,
the wavelength of the electronsiis closer to the range of the particle sizes and the laws of classica
physics have to be substituted by quantum confinement or quantum size effect. The UV-visible
spectrum showed that the absorption peak of obtained CdSe QDs in aqueous solution is 543 nm
(2.28 eV), relative blue-shift to the band gap of bulk cubic CdSe (1.78 eV, 698 nm).
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Figure 8.13 UV-Visible absorption spectra of CdSe QDs.

The quantum dots of the same material, but with different sizes, can emit light of different
colors. The physical reason is the quantum confinement effect. The larger dot gives low energy
fluorescence spectrum. Conversely, smaller dots emit bluer light (Fig.8.14). The coloration is
directly related to the energy levels of the quantum dot. The band gap energy that determines the
energy of the fluorescent light is inversely proportional to the size of the quantum dot. Larger
guantum dots have more energy levels which are also more closely spaced. This allows the
guantum dot to absorb photons containing less energy, i.e., those closer to the red end of the
spectrum. The lifetime of fluorescence is determined by the size of the quantum dot. Larger dots
have more closely spaced energy levels in which the electron-hole pair can be trapped.
Therefore, electron-hole pairs in larger dots live longer causing larger dots to show a longer
lifetime.
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Figure 8.14 Fluorescence spectra of CdSe quantum dots of various sizes.

8.3 Quantum-well Solar Cells

Quantum-well structures are important in optoel ectronics because they offer the joint benefits
of highly confined electron and hole populations and a tunable band gap. One rather less
obvious applicationisto high efficiency photovoltaics: the quantum-well solar cell (QWSC).

A simple, single band gap photoconverter works by absorbing incident photons of energy
greater than the band gap and separating the charges so produced to deliver an electric
current to an externa circuit. In a semiconductor solar cell the charges are separated by the
built-in electric field of a p-n (or p-i-n) junction. Not al the light energy absorbed can be
converted into electrical energy since photogenerated carriers quickly decay to their ground
state, losing any excess energy as heat. A photon of energy #w absorbed in a semiconductor
of band gap Ey can thus deliver no more than Ey of electrical potential energy to the
external circuit. Increasing the band gap increases the potential - and hence the cell voltage; but
decreases the photocurrent since only high energy photons can be absorbed. Therefore, for any
broad band incident spectrum, optimum power conversion is achieved at some intermediate

band gap Eqp.
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These considerations place alimit on the efficiency available from a perfect single threshhold
photoconverter. In the standard air mass |.5 solar spectrum a limit of 31% is reached at a band
gap of 1.35 eV. In principle, such limits may be surpassed in a multi-band-gap or tandem
system, where different parts of the spectrum are preferentially absorbed in materials of
different band gap. Independent optimization of band gaps and photocurrents increases the
theoretical efficiency to about 45% for the standard solar spectrum or 50% under a
concentration of 1000 . Practical improvements fall far short of these limits, usualy through

electrical 1osses.

Quantum well structures are interesting for photoconversion firstly as an aternative multi-band-
gap approach to the tandem cell. Quantum wells added to the space charge region of a single
band gap p-i-n solar cell extend its spectral response to longer wavelengths and so increase
photocurrent (Fig. 8.15). At the same time the QWs act as centers for enhanced recombination
and reduce the cell’s operating voltage. If the improvement in current outweighs the loss

involtage, anet increase in power conversion efficiency isachieved.
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An increase in the limiting efficiency of a monolithic solar cell requires that such enhancements
be available even using a host cell of optimum band gap. This situation essentially requires that
the quasi-thermal equilibrium between the QW and host material is broken, so that
recombination proceeds more slowly than expected.

Lessradically, QW structures are interesting in the possibility of superior practical performance
to the homogenous cell of equivalent band gap. By careful choice of materias for well and
barrier it may be possible to design a QWSC where the net recombination current is smaller
than in the equivalent bulk alloy. This has been experimentally confirmed in InP/Ing s, Gao.ss
As QW structures.

QWSC behaviour depends upon the QW electronic structure in several ways. The joint
density of states function determines the QW absorption spectrum which, in turn,
determines the photocurrent enhancement. Density of electron states in the conduction band
and hole states inthe valence band determine the spatial distribution of electrons and holes
and, hence, the recombination current. Finally, the mixing of states between QW and host

materia or between neighboring QWs can affect the efficiency of carrier transport.

8.4 Quantum-dot Solar Cells

As mentioned above, a solar cell is a device that converts photons from light into electricity.
Fundamentally, the device needs to fulfill two functions. photogeneration of charge carriers
(electrons and holes) in a light-absorbing material, and separation of the charge carriers to a

conductive contact that will transmit the electricity.

Due to the nature of photovoltaics, the light-absorbing material will only absorb certain energy
level from photon.  For example, Silicon has a band gap of 1.14 eV, which means 1.14 eV can
excite the electron into conduction band. If photon has energy more than 1.14 eV, excess energy
will generate heat instead of generating more electron-hole pairs (Fig.8.16). This phenomenon

limits the overall efficiency of the conventional semiconductor photovoltaic device.
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Figure 8.16 Thermalization losses in solar cells

One of the potential approaches to overcome thislimit is carrier multiplication (CM), or multiple
excition generation (MEG). The idea is illustrated in figure 8.17. In a traditional photon
excitation in figure 8.17 a), one phonon can generate only one pair of exciton. The excess photon

energy 7w —Eis dissipated as heat via phonon emission and therefore is wasted. In this case,
the quantum efficiency (QE) of photon-to exciton conversion is zero below E, the energy gap,

and is 100% above it. This corresponds to the Shockley Queisser limitation of the maxima
guantum efficiency mentioned earlier. In figure 8.17 b), the number of excitons produced by a

single photon is only limited by energy conservation. Photons with energies E,, 2E, and 3E,

produce one, two, and three excitons, respectively. The QE is increased by 100% if photon
energy isincreased by E, .

The MEG phenomenon has been known in bulk semiconductors since the 1950s.
However, since the restrictions imposed by energy and momentum conservation, the power
conversion efficiency improvement due to MEG was less than 1%. Recently, it was discovered
that while being low efficiency in bulk semiconductors, MEG can become extremely efficient in

ultrasmall semiconductor nanocrystals. This lead to the quantum dots (QDs) solar cells.

In semiconductor nanocrystals i.e. quantum dots, discrete quantized energy levels are
formed that affect the relaxation dynamics of hot electrons and carriers, and alow other

relaxation channels to compete with phonon emissions. As Schroédinger equation explains, the
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states are quantized according to angular momentum in quantum dot, and translation momentum

conservation is replaced with angular momentum conservation, which is less restrictive.
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Figure 8.17 &) Traditional schematic of solar cell; b) Multiple excitons are generated with one
absorption of a single photon

As mentioned at limitation of bulk semiconductor solar cell, high-energy electrons (hot electron-
hole pair created by absorption of photons larger than band gap) convert their excess energy to
heat through phonon emission. Normally the time scale of this relaxation in bulk semiconductor
is in the order of sub picosecond scale. However, in quantum dot the generated electron-hole
pairs become bound to each other due to strong quantum confinement. And the formation of
discrete quantized energy level slows recombination time scale. So the slowed cooling of
energetic excitons are able to enhance the photon conversion efficiency by allowing free energy

to be extracted from the high energy excitons before they relax to their lowest state and produce
heat.

154



Limitation of solar cell is aso related with recombination of electron-hole pair.
Recombination is part of a process to restore equilibrium to a semiconductor that has been
perturbed, or disturbed out of equilibrium. Perturbations can be in the form of an applied electric
field, a change in temperature or exposure to light. Recombination occurs when there is an
excess of carriers and they are destroyed, by recombining. When electron-hole pairs are
destroyed, a negatively charged electron is attracted to a positively charged hole, and as they get
together, their charges are canceled and the electron is part of a bond once again. Auger
recombination is a type of band-to-band recombination that occurs when two carriers collide
(Fig.8.18). The callision transfers the energy released from the recombining carrier to the
surviving carrier. In other words, one carrier loses energy and the other gains it. The one that
loses it is recombined, and the one that gains it goes to a higher energy level. Eventualy, this
highly energized carrier "thermalizes' - loses energy in small steps through heat producing
collisions with the semiconductor lattice, until it eventually recombines or gains energy once

more. And larger hole effective mass leads to rapid thermalization.
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Figure 8.18 Auger recombination in quantum dots

One of the approaches to overcome those limitations (thermalization and Auger recombination)
iISMEG or CM. CM is very efficient in quantum-confined semiconductor nanocrystals, whereas
it isinefficient in bulk semiconductors (the maximum CM-induced increase in the efficiencies of
traditional solar cellsis less than 1%). By analyzing dynamical signatures of excitons and multi-

excitons in PbSe quantum dot, it is discovered that the absorption of a single photon can produce
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two or even three electron—hole pairs (excitons), which results in internal quantum efficiencies
greater than 200% for conversion of light quanta into charge carriers. The schematic of
generation/relaxation kinetics in a quantum dot is described in Figure 8.19. At time t1, a photon
with energy greater than the CM threshold results in the generation of is absorbed ‘hot’ bi-
exciton(at t2) on the time scale of TCM. After relaxing to its ground state (at t3) with the sub-
picosecond time constant tr, this bi-exciton recombines on the sub-nanosecond time scale
(timeconstant TA) by the non-radiative Auger process to produce a single exciton (at t4). Findly,
the exciton recombines radiatively on a much slower timescale of tens to hundreds of
nanoseconds. A significant difference in the relaxation behavior of bi-excitons (fast decay) and
single excitons (slow decay) is the key property of nanocrystals. Therefore considering CM and

Auger recombination kinetics, current should be extracted before Auger recombination occurs.
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Figure 8.19 Evolution of electron —hole system when photon is absorbed
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Chapter 9 Localization and Quantum Transport

Traditiona solid-state physics is based on the concept of the perfect crystalline solid, sometimes
with arelatively low density of defects. This perfect crystalinity has played a crucial role in the
development of the subject, with Bloch’s theorem stating that wave function of electron in

crustal can be written by

Y (F) =u, (F,R)e‘RF (9.1)
providing the central conceptual base. Concepts that arise from this theorem, such as
bands, Brillouin zones, vertical transitions, effective mass and heavy and light holes, are
really only well-defined in a perfect infinite crystal. In the absence of crystalinity none of
these concepts is strictly valid, though in some cases it provides a useful starting point. In
genera, however, a new approach is required to characterize electrons and phonons in
disordered solids.

When we consider low-dimensional structures Bloch’s theorem may or may not be valid. There
is nothing intrinsic to low dimensionality which invalidates it. Many of the simple examples in
guantum mechanics and solid-state physics text-books are, in fact, one-dimensional (e.g. the
particle in abox, the Kronig—Penney model). Indeed, in a quantum well prepared by any of
the standard growth methods, much of the physics can be understood by using basics of
guantum mechanics and the effective mass approximation. This isbecause aregion of
adjacent GaAs layers in Aly Gai«x As can, for many purposes, be regarded as a perfect
potential well. By doping the AlGaAs, the electrons in the well can be spatially separated
from the scattering due to the ionized donor atoms. Thus, in many respects, the electrons in this

system can be treated as particlesin a one-dimensional box.

The quantum well is, however, avery specia quasi-two-dimensional system, albeit a very
important one. As discussed, it isvery difficult to prepare low-dimensional samples of high
quality for other than lattice-matched planar heterostructures. Thus, most heterojunctions, such

as those with a significant lattice mismatch, metal-oxide-semiconductor field-effect transistors
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(MOSFETS), narrow quantum wells and quantum wires, etc., are in practice highly disordered
with an effective density of scatterers which can approach the density of atoms. Clearly, in such
systems, it cannot be valid to treat the effect of scatterers with perturbation theory using the
perfect crystalline case as a starting point.

As we shall see later, there is one sense in which low-dimensiona systems are intrinsically
different from three-dimensional systems. The amount of scattering required to produce
dramatic changes in the behavior can sometimes be so small that perturbation theory may
never be valid.

9.1 Localization, Percolation

Let us start with asimple classical problem. How does afluid flow through a random medium?
Thisis aproblem of considerable practical importance in its own right: the extraction of oil from
porous rock strata. Consider a random landscape which is being slowly filled with water. At
first there will be a continuous land mass with a few lakes (Fig. 9.1(a)). When the water level is
very high we haveislandsin asea (Fig. 9.1(b)). Let us now suppose there is a dam at the edge of
the area which requires large quantities of water to drive a power station. When the water level
is low only the lake next to the dam can be used and it will soon run out. Asthe level is raised
this lake becomes larger but still finite. The power station will run longer but will still eventually
drain the lake and have to stop. At acritical water level (Fig. 9.1(c)) the system changes from a
lake district to an archipelago. Thisisanalogous to the percolation transition, where the water
first forms a continuous network through the landscape. After this the power station can run

indefinitely without fear of running out of water.

This phenomenon has much in common with more conventional phase transitions. There is a
characteristic length scale which diverges at the transition: the size of the lakes or islands. There
is awell-defined critical water level, rather like the critical temperature of the freezing transition

or the ferromagnetic-to-paramagnetic transition in iron.
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Figure 9.1. Percolation diagrams, with (a) low water level with afew lakes,
(b) high water level with afew idands, (C) intermediate (critical) water
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If we think in terms of the density of blockages rather than the water level we see that thereis a

critical density above which the flow of water stops.

The one-dimensional version of this problem is specia. Any blockage of the channel is enough
to prevent the flow of water. The critical density is zero. Thisis an example of a problem which
cannot be solved by perturbation theory. There is a discontinuous jump in the behavior between a
system with no blockages and one with a single blockage. In higher dimensions, in contrast,

water can flow around the blockage.

9.2 The Anderson Transition and the Mobility Edge

The concept of the localization of electrons caused by disorder is due to Anderson. He argued
that an electron which starts at a particular site cannot completely diffuse away from that
siteif the disorder is greater than some critical value. Anderson thus introduced the concept of

localized and extended states. The characteristics of these states can be summarized as follows

(a)

Figure 9.2. Schematic diagrams of (a) extended and (b) localized states, showing
the correlation length |, and the localization length x.
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(a) extended (i) spread over the entire sample
(i) not normalizable

(i) contributes to transport

(b) localized (i) confined to afinite region
(i) normalizable

(iif) does not contribute to transport

It is worth noting at this point that the phenomenon of localization is not confined to
electrons, but can also be observed in other wave phenomenain random media, such as acoustic

and optical waves, aswell as water waves (Fig. 9.3).

Figure 9.3 Three photographs of a water bath exposed to an audio-frequency oscillation.
(a) Shows a situation where the obstacles sit in a regular quadratic lattice (frequency 76
Hz). We see strong Bragg reflection corresponding to standing waves. (b) and (c) show
randomly spaced obstacles exposed to two different audio frequencies (105 Hz and 76 Hz).
Both (b) and (c) show standing wave patterns, but localized in different areas.
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Mott later introduced the concept of a mobility edge (Fig. 9.4). He argued that it is
meaningless to consider localized and extended states which are degenerate since any
linear combination of a localized and an extended state must be extended. Thus, the concept
of localization can only be meaningful if there are separate energy regions of localized and
extended states, rather like bands and gaps. These regions are separated by a mobility edge.
Mott further argued that the states close to aband edge are more likely to be localized than
those in the middle of a band. Sincethe localized states do not take part in conduction,
electrons in adisordered semiconductor must be activated to beyond the mobility edge rather
than simply to the band edge to contribute to the conductivity. Thisactivated processwould be

manifested in aconductivity o of theform

E —-E
S =s exp| ———— (9.2)
° keT

where E,, and E. arethe mobility edge and Fermi energy, respectively. Thisform should

reveal itself asthe slopein an Arrhenius plot of the conductivity, i.e. aplot of Ins vs. U/T:

-E,

m
Ins =Ins ;- (9.3)
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Conductivity
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Metallic Conductivity

The semi-classical conductivity can be written in the form

ne’ nefl  néll
m  mve Ak

S =

(9.4)

where n is the density of conduction electrons, m and e are the electron mass and charge,
respectively, t isascattering time, | isthe mean free path, and ve and kg are the Fermi velocity
and wave vector. The density n of electrons is proportional to temperature in semiconductors,
however in metals it is constant value, and conductivity depends on |, which in its turn is

determined by scattering processes.

Conductivity in nanowires

Severa physical reasons predict that the conductivity of a nanowire will be much less than that
of the corresponding bulk material. First, there is scattering from the wire boundaries, whose
effect will be very significant whenever the wire width is below the free electron mean free path
of the bulk material. In copper, for example, the mean free path is 40 nm. Copper nanowires less
than 40 nm wide will shorten the mean free path to the wire width. The conductivity of a

nanowire can be studied suspending it between two el ectrodes.

Nanowires show peculiar electrical properties due to their size. Unlike carbon nanotubes, whose
motion of electrons can fall under the regime of ballistic transport (meaning the electrons can
travel freely from one electrode to the other), nanowire conductivity is strongly influenced by
edge effects. The edge effects come from atoms that lay at the nanowire surface and are not fully
bonded to neighboring atoms like the atoms within the bulk of the nanowire. The unbonded
atoms are often a source of defects within the nanowire, and may cause the nanowire to conduct
electricity more poorly than the bulk material. As a nanowire shrinks in size, the surface atoms
becomes more numerous compared to the atoms within the nanowire, and edge effects become

more important.

Furthermore the conductivity can undergo a quantization in energy: i.e. the energy of the
electrons going through a nanowire can assume only discrete values, multiple of the Landauer
constant G = 2e2 / h (where eisthe charge of the electron and h is Planck's constant).
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The conductivity is hence described as the sum of the transport by separate channels of different
guantized energy levels. The thinner the wire is, the smaller the number of channels available to

the transport of electrons.
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Chapter 10 Application

As described, nanostructures, whether it be quantum dots, wires or wells, have
interesting size dependent optical and electrical properties. The study of these intrinsic

propertiesisthe realm of nanoscience.

Since there are amost too many applications of nano to catalog here, this section
isnot meant to be comprehensive. However, we briefly touch upon some applications

of quantum wells, quantum wires and quantum dots that are seen in the current literature

10.1 Nanowires

We begin with a short discussion about applications of nanowires. Devices using these
low dimensional materials have not been made to any great extent. Thisis because the
historical development of nanostructures seems to have skipped nanowires, moving
from wells to dots first. More recently, though, researchers have learned how to
make asymetric nanowires using a number of approaches including vapor-liquid-
solid (VLS) and solution- liquid-solid (SLS) growth. The moveto applications has
occured quickly with the key selling point being that, in addition to exhibiting
guantum confinement effects, nanowires are at the same time (as their name implies)
wires. This means that making electrical connections to the outside world and
assembling actual devicesmay be alot easier than with other nanostructures such as

guantum dots.

Crossed nanowire junctions have been made, using p-type and n-type wires. These
junctions, in turn, serve as diodes in one case, memory elements in another and even
electroluminescent devices. A schematic of such a nanowire device is provided below.
Ultimately, though, the trick is to learn how to assemble such nanowires into useful

structures in a convenient and reproducible fashion.

Nanowires have also been used as sensors by monitoring changes in the conductance
experienced when different compounds or gases are adsorbed to the wire’s surface. In
this respect, nanowires may one day be packaged as efficient sensors for minute

amounts of toxic gases, chemical weapons, and explosives.
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Figure 10.1: A crossed nanowire junction

Figure 10.2 Conducting polymer nanowire sensor formed directly in microfluidics
device showing (a) actual view of fabricated device, (b) optica micrograph of
microfluidics device and (c) schematic with polyaniline and polypyrrole



10.2 Quantum Dots

In the realm of colloidal quantum dots the following applications have been proposed:

Quantum dots for biological labeling

Quantum dots as lasing elements

Quantum dots as sensitizers in photovoltaic applications
Quantum dots for active layersin light emitting diodes

Quantum dots as memory elements; single electron transistors

Brief descriptions of each application and reasons why quantum dots have distinct

advantages over conventional solutions are presented below.

M edicine; Biological labeling

Conventiona biological labeling is currently carried out using organic fluorescent
molecules or in some cases radioactive sources. In the case of organic fluorophores
such as tetramethylrhodamine (TMR), these molecules are covalently attached to a
biological specimen of interest through specific linking chemistry. Organic
fluorophores exhibit several disadvantages. Namely, organic dyes suffer from an effect
called photobleaching where after exposure to incident light for a modest amount of
time, they undergo some sort of photochemistry which ultimately renders them non-
fluorescent. Basically the dyes “fade”. This makes labeling and tracking experiments
difficult be- cause of the finite observation window one has before the fluorescent signal
disappears. As a general rule of thumb, organic dyes will absorb and/or emit
approximately 106 photons before photobleaching. In addition, organic dyes typically
have fairly discrete absorption spectra. So from dye to dye their absorption wavelength
or energy will change dramatically. This makes multicolor experiments difficult
because exciting each dye requires a different excitation color. Proper filtering of the
desired emission signal becomes increasingly difficult in this environment of multiple
excitation frequencies. Finaly, achieving different colors for these multicolor
experiments may mean synthesizing different compounds, which, in itself, can be

fairly involved.
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Quantum dots, especially CdSe have narrow emission spectra (~ 30 nm FWHM).
Furthermore, because of quantum confinement effects, different sized dots emit
different colors (one material, many discrete colors). This eliminates the need for
synthesizing many different organic fluorphores. As one progresses to higher
energies in the dot absorption spectra, there are increasingly larger numbers of
excited states present. This is anaogous to solutions of the particle in a 3D box
with progressively larger quantum numbers, n. So al dots whether they be
“small” or “large” will absorb excitation wavelengths in the “blue”. This makes
multicolor experiments easier since it eliminates the need for multiple excitation
wavelengths. One laser, say the 488 nm line from an argon ion, can be used to excite all
dots, giving emission anywhere in the visible. Filtering the 488 nm line is also much
simpler than trying to simultaneoudly filter the 473 nm, 488 nm, 514 nm, 532 nm, and
543 nm lines of several lasers (argon ion lines plus YAG doubled line plus green HeNe
line). Finally, semiconductor quantum dots are inorganic compounds. As such they are
somewhat more robust that organic dyes when it comes to photobleaching. Dots have
been seen to absorb and emit over 108 photons before experiencing irreversible
photobleaching (two orders of magnitude more photons). Therefore, dots are much

more resistant to fading. The accompanying figureisadepiction of this.

The surface chemistry of quantum dots is still in its infancy. There is still much that
needs to be understood before we can begin to do specific chemistry, attaching dots to
specific sites on proteins or cells or other biological specimens. This is an area where
organic dyes still prevail. Furthermore, semiconductor quantum dots, although
nanometer sized, may also be alittle too big for some labeling experiments. There
might be certain membranes or cellular regions that a dot cannot penetrate because of
natural size restrictions (another area where organic dyes are better). Finaly,
labeling proteins or other specimens with relatively large quantum dots may also
perturb the system in unintended ways. So for example if one istrying to watch
protein folding in rea time one needsto ask whether the dots attached to the
protein are actually affecting the folding and unfolding pathways. Consider the size

of atypical protein and the size of atypical quantum dot.
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Figure 10.3 Comparison of a quantum dot to organic dye photobleaching rate
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Figure 10.4: Comparison of quantum dot absorption/emission spectra to organic dye
absorption emission spectra in light of multicolor labeling experiments
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Lasing

Lasers are important devices used in everything from tomorrow’s national missile
defense system (Reagan Star Wars Version 2.0), the data reading element in your
DVD or CD player, the red bar code scanner at the su- permarket to an excitation
source in the laboratory. Conventional lasing sources are based on gases,
semiconductors and even organic dyes. With the genera movement towards solid
state lasers, semiconductors have re- ceived a lot of interest for diode laser
applications. Further interest was generated with the realization of semiconductor
nanostructures (also called low dimensional materials) since it was realized that these
systems could po- tentially make even more efficient lasers than their  bulk
counterparts. This has to do with the density of states argument that we discussed in
previous chapters. The density of states argument won’t be repeated here but rather is
briefly summarized in the accompanying figure. Inthis area, quantum well lasers
have led the technology, producing some of the most efficient and tunable lasing
systems to date. Nanowires have recently been made to lase but the technology in its
infancy as with lasing in quantum dots. However, one can envision that the size
dependent emission spectra of quantum dots, wires or wells make them attractive
lasing elements. In the specific case of colloidal quantum dots, the emission from CdSe
is shown to span the entire visible part of the spectrum. So, in principle, a single
device could carry a CdSe blue laser, a CdSe green laser and aCdSered laser. One
potential drawback with this system though is a phenomenon called Auger ionization,
which might ultimately limit the applicability of this material. However, we leave it to
the reader to do some outside reading if they are interested in this subject.

Energy; Photovoltaics

Renewable energy has been an area of great interest since the 1973 OPEC oil embargo,
in retaliation for our support of Israel in the 1973 Yom Kippur War The idea for
alternative sources of energy isto eventually move away from coal or petroleum based

sources of energy. Motivating this are economic,
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political and environmental reasons. Solar energy is one facet of renewable energy with
wind, methanol, and hydrogen being others. The idea hereisto take advantage of
the sun’s abundant energy and convert it to usable energy much like how Nature
has come up with photosynthesis in plants. What’s needed, however, is an active
material like chlorophyl that can absorb solar radiation and provide efficient charge

separation to prevent radiative or nonradiative recombination in the material.

Commercial solar cells are currently made of silicon. Unfortunately, the efficiencies of
these devices istypically onthe order of 15%. So most of the solar energy
collected by these devicesiswasted. To make up for al of these losses, large tracts
of land must be used for vast sprawling fields of solar cells (solar farms). Improved
devices made of single crystal silicon have been shown to achieve conversion
efficiencies of 30% but at the cost of being very expensive and impractical for
commercial use. As a consequence solar energy has not broken through into mainstream

use.

Quantum dots come into play for several reasons. They have tunable, size
dependent, absorption and emission spectra.  Different quantum dots can be made to
absorb anywhere from the UV into the infrared. This tremendous dynamic range
cannot be matched by organic dyes. Further- more, there are few organic dyes that
are efficient inthe infrared. Asaside note, one can imagine aquantum dot based
solar cell that operates under cloudy conditions and rainy days where the overcast
sky will block much of the visibleyet still transmits most (if not all) of the infrared.
In addition, the absorption cross section or exctinction coefficient of quantum dots is
generally an order of magnitude greater than conventional organic dyes. This means
it take fewer dots to absorb the same amount of light. Dots are also more
photostable, meaning that they are more likely to reach the 10,000 hour threshold
needed for practical commercial devices. Further- more, nanoparticles when used as
substrates or electrodes in dye based solar cells have much larger surface areas than
conventional bulk substrates. As a consequence, one can adsorb a greater number of
dye molecule per unit area in these hybrid devices than in conventional cells. The
efficiencies of these hybrid devices is consequently higher, reaching that of
conventional silicon cells. One of the first of such devices is referred to as the Gratzel

cell after itsinventor.
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Lighting; Light emitting diodes

Lighting hasn’t changed all that much since the light bulb was invented by Edison
and others closeto ahundred yearsago. More efficient fluorescent lighting has since
been developed but suffers from flicker and color purity issues. Recently solid state
light emitting diodes (LED) have come on the market and are poised to revolutionalize
the lighting industry. LED devices that exhibit tremendous brightness (look at some of
the new red and green traffic lights), consume little power, come in different colors,
and emit little or no heat (museum quality lighting for paintings) are now
commercially available. In this regard, a maor goa of the LED industry is to
eventually achieve affordable white light by mixing red, green and blue LEDs. The idea
isto one day replace all incandescent and fluorescent light bulbs in homesand offices.
Furthermore, aong these lines, brighter, more efficient, flat panel displays using
this technology, rather than inefficient backlit liquid crystal displays, may come out
of these developments. Along the same lines, cheaper high definition digita

televisions may also emerge from this technol ogy.

A current problem with LEDs, however, is that different active semicon- ductor
elements must be manufactured via potentially expensive processes such as MOCVD
to achieve multiple colors. For example, GaN is used for blue light, indium doped
GaN can be used to get green and so forth. One way to circumvent this problem isto
take advantage of quantum confinement as in the case of quantum dots. Different sized
guantum dots will emit different colors so, in principle, one material can cover the
entire visible spectrum. They can also be manufactured using the same process
potentially lowering overall manufacturing costs. One disadvantage with current
colloidal quan- tum dots is that the heterojunction between the dot and the outside
world is imperfect. There are organic ligands present as well as many quantum dot
surface defects that open up undesired states and recombination pathways in addition

to creating large resistances to carrier transport.
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Memory, the Coulomb staircase

What would a chapter on devices and applications be if we didn’t touch on computers.
Back in 1965, Gordon Moore, one of the founders of Intel made an empirica
observation that has since become known as “Moore’s law” (or sometimes referred to
as Moore’s first law). The number of transistors per unit area on an integrated circuit
doubles each year. Since then, Moore’s law has generally held with some minor
modifications. It now doubles every 18 months. However, as you might suspect, this
wild growth cannot continue forever and it was realized that with current
photolithographic techniques that we would be in trouble by 2010. To consistently get
more transistors per unit area means that their size decreases yearly. Currently the
features on a Pentium 1V chip have spacings on the order of 0.11 microns (110 nm).
Next generation chips will have features spaced by 0.09 microns (90 nm). How
much lower can we go? Well, because of the diffaction limit we cannot continue to use
existing techniques but are forced to invest in deep UV photolithography or x-ray
lithography or even e-beam lithography if we are to get smaller transistors and stay
on track with Moore’s law. Such new technologies are very expensive and potentially
too costly to scale up to the fab level (Moore’s second law of costs). Because of this,
researchers have looked to nano for a solution. Among the ideas people have come up

with arewhat arerefered to as single electron transistors.

Early on, researchers realized that if one has a very small metal nanopar- ticle, its
capacitance might be large enough to store discrete charges. Low- ering the
temperature also helps.  Both work because ether raising the capacitance or
lowering the temperature decreases the value of the thermal energy relative to the
Coulomb energy between discrete charges. Inturn, this allows one to store charges
on the metal nanoparticle without having it thermally expelled. Alternatively, with
semiconductor quantum dots, the discrete particle in a box-like energy levels with
spacings large compared to kT also means discrete steps in the conductance of
electrons through the dot and the additional possibility of storing chargesjust aswith
the metal nanoparticles. These effects could then form the basis of single electron elec-
tronics of which the single electron transistor is a member. We review the principles
of what is knows as the Coulomb blockade and Coulomb staircase model below because

of its potential importance.
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In the orthodox model for single electron tunneling, a simple circuit model is
considered as shown in the accompanying figure. Basically thecircuit consists of
a perfect voltage source and two capacitors that may or may not have equivalent
capacitances. In the orthodox model, one of the two capacitors is generally
considered to have amuch higher capacitance than the other. The region in between
the capacitors is the “island” where electrons can be stored. This region represents

a quantum  dot or metal  nanoparticle in  rea life
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Appendix 1. Crystal structure and
Materials

Solids generally appear inthree forms, amorphous (no long range order, glass-like),
polycrystalline (multiple domains) or crystalline (a single extended domain with long
range order). Since nano typically concerns itself with crystalline metal nanoparticles
and semiconductor nanocrystals, wires, and wells, having a basic picture of how the
elements arrange themselves in these nanocrystalline systems is important. In this
respect, crystal structure comesinto play in many aspects of research, from a material’s
electronic spectra to itsdensity and even to its powder x-ray diffraction pattern.

Atoms in a crystal are generally pictured as being arranged on an imaginary lattice.
Individual atoms (or groups of atoms) are hung off of the lattice, much like
Christmas ornaments. These individual (or groups of ) atoms are referred to as the
“basis” of the lattice. The endless repetition of basis atom(s) on a lattice makes up the
crystal. In the ssimplest case, the basis consists of only a single atom and each atom is
located directly over alattice point. However, it isalso very common to see abass
consisting of multiple atoms, which isthe case when one deals with binary or even
ternary semiconductors. Here the basis atoms do not necessarily sit at the same position
as alattice point, potentially causing some confusion when you first look at the crystal
structures of these materials.

There are 14 three dimensional Bravais lattices shown in Figure A1l.1.
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These are also referred to as conventional unit cells (i.e. used in everyday life) as
opposed to the primitive unit cell of which only the simple cubic lattice qualifies. That
is, most of these unit cellsare not the simplest repeating units of an extended lattice;
one can find even simpler repeating units by looking harder. Rather, these conventional
cells happen to be easy to visualize and interpret and hence are the ones most commonly
used.
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Figure A1.1: 14 3-dimensiona Bravais lattices.

Single element crystals

In the case of metals, the cubic lattices are important, with particular emphasis on the

face centered cubic (FCC) and body centered cubic (BCC) structures. Both FCC
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and BCC structures have a single atom basis; thus, they strongly resemble the Bravais
lattices or conventional unit cells seenin the previous diagram. The number of atoms
per unit cell inthe FCC caseis 4 (8 corner atoms and 6 face atoms). Likewise, the
number of atoms per BCC unit cell, using the above counting scheme, is 2 (1 interior
atom and 8 corner atoms). Note that an alternative name exists for the FCC unit
cell: cubic close packed (CCP), which should be remembered when reading the
literature. Both unit cellsare shownin Figures Al.2 and A1.3. Typical elements that
crystallize in the FCC structure include: Cu, Ag, Au, Ni, Pd, Pt, and Al. Typical
elements that crystallize in the BCC structure include: Fe, Cr, V, Nb, Ta, W and Mo.

Analogous to the FCC lattice is the hexagonal close packed (HCP) structure. A simple
way to differentiate the two isthe atomic packing order, which follows ABCABC in
the case of FCC and ABABA in the case of HCP. The letters A, B, and C etc.
represent different atom planes. The HCP structure has a conventional unit cell but also
a primitive unit cell shown in Figure A1.4 It contains 2 atoms per unit cell (8 on the

corners and 1 inside) as opposed to the conventional cell which has 12 per cell.

Another conventional unit cell that is often encountered is called the “diamond” structure.
The diamond structure differs from its FCC and BCC counterparts because it has a multi
atom basis. Therefore, it does not im mediately resemble any of the 14 Bravais lattices.
It is adopted by elements that have a tendency to form strong covalent bonds, resulting
in tetrahedral bonding arrangements (Figure A1.5). The number of atoms per unit cell
inthis caseis 8 (8 corner atoms, 4 interior atoms, 6 face atoms). Some common
elements that crystallize inthe diamond structure include: C, Si, Geand Sn.

Compound crystals

In the case of binary compounds, such aslll-V and I1-V semiconductors, things get a
little more complicated. One doesn’t have the benefit of conventional unit cells that
resemble any of the 14 standard Bravais lattices. Instead these conventional unit cells
often have names such as the NaCl structure or the ZnS structure and so forth. Thisis
because, unlike simple FCC or BCC metals, we no longer have asingle atom basis,
but rather abasis consisting of multiple atoms aswell asabasis made up of different

elements.
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Figure A1.2 FCC unit cell

Figure A1.3 BCC unit cell
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Figure Al.4 Primitive hexagonal unit cell.

Figure A1.5 Diamond structure unit cell
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Common crystal lattices for semiconductors include the ZnS, NaCl and CsCl lattices.
The ZnS, also caled zinc blende (ZB) or sphalerite, structure can be visualized as
two interpenetrating FCC lattices offset by (/4 1/4 1/4) in Figure ALl6. Itis
identical to the diamond structure we saw in the case of single element crystals. The
only real difference is that now we have two elements making up the atom basis of the
unit cell. Using the above counting scheme we find that there are 8 atoms per unit cell.
Thisis further subdivided into 4 atoms of element 1, and 4 atoms of element 2. Y ou will
notice in the figure that the 4 atoms of one element are completely inside the unit cell

and that the atoms of the other element are arranged as 8 corner and 6 face atoms.

The NaCl structure can be visualized as 2 interpenetrating FCC lattices offset by ( 1/2,
0, 0) in Figure A1.7. It has 8 atoms per unit cell. This is broken up into 4 atoms from
element 1 and 4 atoms from element 2. One can see in the figure that for element 1
there are 8 corner atoms and 6 face atoms. For element 2 there are 12 edge atoms and 1

interior atom.

The CsCl structure isthe compound material version of the single element BCC
unit cell. It isshown in Figure A1.8 where one can see that there are two elements
present with one of them being the center atom. The atoms from the other element take
up corner positions in the unit cell. The CsCl has two atoms per unit cell, 1 from each

element.

The wurtzite crystal structureisthe compound material version of the single element
HCP structure. It has amulti atom basis. The primitive unit cell is shown in Figure A1.9

and contains 4 atoms per unit cell, 2 atoms from element 1 and 2 atoms from element 2.
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Figure A1.6. Zincblende or ZnS structure unit cell.

Figure A1.7 NaCl structure unit cell.
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Figure A1.8 CsCl structure unit cell.

Figure A1.9 Primitive wurtzite unit cell.

183



Miller indices

Sometimes you will see the orientation of a crystal plane described by (001) and so
forth. These numbers are referred to as Miller indices. They are generated using some

simple rules described below.

Take the desired plane and see where it intersects each X, y, z axisin
multiples of the lattice constant. For the case of cubic lattices the lattice
constant, a, isthesamein all x, y, and z directions.

Next take the reciprocal of each intersection point and reduce the three values to
their lowest integer values. (i.e. divideout any common integer)

Express the plane through these integers in parentheses as (abc)

Should the plane not intersect an axis, say the z axis, just write a 0. For example
(ab0)

If the intercept isin the negative side of an axis, say the y axis, just put a bar

over the number, for example (aEc).

Examples areillustrated in Figures A1.10and A1.13.
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Figure A1.10: Examples of using Miller indices
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Figure 2.13: More examples of using Miller indices.

Common Metals

Table Al.1: Common metals

I I1 III Iv. VvV Vi
B C N
Al Si P S
Cu Zn Ga Ge As Se
Ag Cd Im Sn ©Sb Te
Au Hg TI Pb Bi Po

Ag=FCC [cubic] (alternatively called cubic closest packed)
Au=FCC [cubic] (alternatively called cubic closest packed)
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Common Semiconductors

Group 1V

Table Al.2: Group 1V semiconductors

I 11 I11 IV Vv VI
B C N
Al Si P S
Cu 7Zn Ga Ge As Se
Ag Cd In Sn Sb Te
Au Hg TI Pbh Bi Po

Si=diamond structure

Ge=diamond structure

Group 111-V

Table A1.3: Group 111-V semiconductors

I II Ir 1v V VI
B C N
Al Si P S
Cu Zn Ga Ge As Se
Ag Cd In ©Sn Sb Te
An Hg T1I Pb Bi Peo

GaN=ZB [cubic] (alternatively called ZnS structure)
GaAs=ZB [cubic] (aternatively called ZnS structure)
INP=ZB [cubic] (alternatively called ZnS structure)
INAs=ZB [cubic] (aternatively called ZnS structure)
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Group 11-VI

Table Al.4: Group 11-VI semiconductors

I IT I IV Y
B C N

Al Si P S
Cu Zn Ga Ge As Se
Ag Cd Im Sn Sb Te
Au Hg TI Pb Bi Po

V1

ZnS=ZB [cubic]
ZnSe=ZB [cubic]
CdS=ZB [cubic]
CdSe=wurtzite [hexagonal]
CdTe=ZB [cubic]

Group IV-VI

Table A1.5: Group 1V-VI semiconductors

I I1 11 1Iv Vv VI
B C

Al Si P )

Cu Zn Ga Ge As 8Se
Ag €Cd Im Sn Sb Te
Ax Hg T P8 B Po

PbS=NaCl structure
PbSe=NaCl structure
PbTe=NaCl structure
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Appendix 2. Bragg’s Law of
Diffraction

The diffraction of X-ray from a crystal can also be easily understood in terms of which
was first proposed by Bragg. In this model, an X-ray which reflects from the surface of a
substance has traveled less distance than an X-ray which reflects from a plane of atoms
inside the crystal. The penetrating X-ray travels down to the internal layer, reflects, and
travels back over the same distance before being back at the surface. The distance
traveled depends on the separation of the layers and the angle at which the X-ray entered
the material. For this wave to be in phase with the wave which reflected from the surface
it needs to have traveled a whole number of wavelengths while inside the material.

Bragg expressed thisin an equation now known as Bragg's Law:

Bragg's Law: ]
ag ﬂlﬂllﬂﬁxi i
e R B e N
where e ™~J Id
-e-a--=Zaj;e--oLe-

A, is the wavelength of the rays
{) iz tha angle batween the incident rays and the surface of the crystal
d is the spacing between layers of atoms

and constructive interference occurs when N is an integer (whole number)

When nisan integer (1, 2, 3 etc.) the reflected waves from different layers are perfectly
in phase with each other and produce a bright point on a piece of photographic film.
Otherwise the waves are not in phase, and will either be missing or faint.

Derivation of Bragg’s Law:
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Note that

h=dsing (A21)

so the path length difference between these two beams are

Al =2dsing (A2.2)

The phase difference will be:

Af =(2dsing)(2p/1 ) (A2.3)

When this phase difference is equal to 2pn(with n being an integer) we will have

constructive interference. This leads to the Bragg equation:
(2dsing)(2p/l )=2pn (A2.4)
or
2d,,, sing =nl (A2.5)

In general, we only need to consider the first order diffraction (n=1) as diffractions of
high orders can be considered as the first order diffractions from planes with an

interplaner spacing of d,,/n. For example, the second order diffraction from (100)

planes can be considered as the first order diffraction from (200) planes.
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Appendix 3. Review of Quantum

M echanic

In Classical Mechanics, a state of a particle’s motion is specified by its position and
momentum. In Quantum Mechanics, the state of motion for a particle isnot specified

by its position and momentum. In fact, the position and momentum cannot be precisely
determined simultaneoudly. Instead, the state of motion for a quantum particle is
described by awavefunction (or state function) which extends to alarge region of space, and

can be a complex function. Typically, a (time independent) wavefunction of a stationary state

v.(7)

where k represents one set of so-called quantum numbers, usually discrete. Examples of

for a quantum particle iswritten as

guantum numbers are linear momentum, angular momentum, etc. Different set of quantum

numbers, say, k1, k2, ..., represent different wavefunction

Y (F),y . (F)

which correspond to different states of the particle’s motion. Therefore, one can use these

discrete set of quantum numbers to characterize state of the particle’s motion. A state function

suc as yk(F)cannot be  measured directly. It has a  meaning



\|2
of probability: its modular }y ‘ (r)‘ gives the spatial distribution of a particle’s position

in a state with quantum number k. Hence, in this representation of a quantum state, the
guantum number (e.g., momentum) is known precisely, but particle’s position is

unknown (known by a probability distribution).

Wavefunction should satisfy the following conditions:

-\ 2
1. Since }y ‘ (r)‘ has the meaning of distribution, it must be normalizable

-\ 2
H/ k(r)‘ d’r =1 (A3.1)
2. Linear superposition of wavefunctions also describes the particle possible states.

Ity (F),y Ky (F) aretwo possible states of a particle, their linear summation

y (1)=Cy  (r)+Cy (1) (A3.2)
isalso astate of the particle. Inthe above (A3.2) C; and C, are any two

complex numbers.

In quantum mechanics, al observables become operator, represented by headed
notation, e.g., A. An operator is meant to act the function describing particle states,
and the result is another function also corresponding to particle state.

The experimentally measurable quantity is the so-called expectation value of Aisa

mean value

<A>:jy A dr (A3.3)

In so called coordinate representation the following correspondence takes place between

classical quantities and quantum operators (correspondence pronciple):

r Sf=r

_ (A3.4)
p—> p=-iavV

And in general

—_ — A

F(r.p)>F=F(r-inv) (A3.5)
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For example, the expectation value of position and momentum of aparticle at in

state y (r) are

(F)=[y *fy d°r = [rd°rly [
(A3.6)
(f)}zfy *fy d°r =—ihjy *W dr

According to a correspondence principle, the Hamiltonian operator of a particle is given

by

"_ 1 2 - _ hz 2
H_%p +V(r)_—%v +V(r)
(A3.7)
-
a 2 ayZ a 2

Hamiltonian operator corresponds to total energy of a system. In stationary condition
Hamilton operator does not depend on time explicitly, and wave function and

corresponding energies can be found my means of Schrodinger equation

Hy =By (A3.9)

[—%VHV(F)}y g (A310

Thisisaproblem of finding operator eigen vectors and eigen values.

As it is known form linear algebra, if two operators A and Bcommute with each

another,

AB-BA=0 (A3.11)

they have got the same eigen vectors. In quantum mechanics we say that, if two operator
commute with each another, the values of physical quantities corresponding to them, can
be measured simultaneoudly.

In stationary condition physical quantity is measurable, if corresponding operator
commutes with Hamilton operator. Wave function depends on quantum numbers, each

of which corresponds to one of the commuting with Hamiltonian operator.
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Appendix A: k.p Method

A.1 Band Theory: Bloch Functions

A solid consists of many atoms and electrons. The total energy of the system is therefore the
sum of the kinetic energies of all the nuclei and electrons, the potential energy due to nuclear
forces, the potential energies of electrons in the field of nuclei, the potential energy due to
electron—electron interactions, and the magnetic energy associated with the spin and the
orbit. The total Hamiltonian of the system may be constructed accordingly. The formidable
problem of solving the resultant Schrodinger equation is bypassed by introducing several
approximations. Since the motion of nuclei is sluggish, the electrons instantaneously adjust
their motion to that of the ions. The total wavefunction is then written as a wavefunction for
ions ¢(R) and that for all electrons y/(r, R) instantaneously dependent on all ionic positions
R. An approximation, known as the adiabatic approximation, is introduced to decouple the
Schrodinger equation into a purely ionic and a purely electronic equation, which are
expressed, respectively, as

H $(R) = ELp(R) (A.1)

and
Hew(r’ R) = Eelﬁ(}’, R) (Az)

where r denotes the electronic coordinates [1,2].

The electron potential energy is due to electron—electron and electron—ion interactions.
If a suitable average is found for the first, a constant repulsive contribution can be added to
the electron energy and then each electron becomes independent. The one-electron
Schrodinger equation then takes the form

Hi;(ri, R) = E;ip,(ri, R) (A.3)
where
p?
H,, = V(ry, R; A4
: 2m0+§,~ (ri,R;) (A4)

Silicon Photonics: Fundamentals and Devices, First Edition. M. Jamal Deen and P. K. Basu.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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and p; is the momentum of the ith electron. The Hamiltonian still depends on the
fluctuating position of the ion. In the next approximation, the ions are assumed to lie in
their equilibrium position and the effect of ionic vibration is taken as a perturbation. Thus
the problem is reduced to solving the equation

2m0 + Zv r—Ry)Y(r) = Ey(r) (A.5)
The ionic potential V is periodic and the eigenfunctions are Bloch functions expressed as
V() = Uni(r) exp (/k.x), (A.6)

where the cell periodic part U(r) obeys the relation
U (r +R) = Uy (r). (A7)

In the above equations, R is a vector of the Bravais lattice, n denotes the band index, and k is
a wave vector of the electron in the first Brillouin zone. From Eqs. (A.6) and (A.7)

lpnk (r + R) = lpnk (l’) exXp (]kR)

The Bloch functions are eigenfunctions of the one-electron Schrodinger equation and
therefore they are orthogonal to one another. Thus

an’k’l//ndeV = 511’,n5k’k (A.S)
The wavefunctions are also normalized over the volume V of the crystal and therefore
lpnk = V_l/zUnk (V) exXp (]kl‘) (A9)

A.2 The k.p Perturbation Theory Neglecting Spin

Complete knowledge of the band structure of a semiconductor requires that the full £~k
dispersion relation be known completely. The Schrodinger equation should therefore be
solved completely. This is a rather difficult task since the form of the periodic potential V(r)
must be specified. Fortunately, in most descriptions of the electron and hole properties in
semiconductors, the mostly populated electron and hole states lie within a fraction of an eV
from the band edges. Thus, if the wavefunctions and energies of the carriers are known at the
band extrema, then perturbation methods may be applied to find out the wavefunctions and
energies at other points in the Brillouin zone, leading to knowledge of the E—k relationship.
The method, known as k.p perturbation theory, is most widely used in the study of transport
and optical processes in common semiconductors [3-9].

The k.p perturbation theory is based on the fact that the cell periodic part U, of the
electrons, for any value of k but different bands, forms a complete set. Let us consider the
wavefunctions for the electrons having a value k near the minima in the nth band. For
simplicity we assume that the minima are located at k =0. The theory is applicable also
when the minima are located at k =k(. The wavefunction is given by

exp (jk.r), (A.10)

m

lp = Unk( ) eXP(]k r [Z Cm m()
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since U, forms a complete orthonormal set. Using this form of / in the Schrodinger
equation, one obtains

[ 2?;0 V24 ’sz p+ ? +V(r )] Une(r) = Ep(K) Uy (r). (A.11)

However, U, is the wavefunction for k = 0 in the nth band satisfying the equation

2
|:_2hl,noVz + V( ):| Um()(l‘) = Em(O)Um()(l‘). (AIZ)

We now put Eq. (A.10) in (A.11) and use (A.12) to obtain

h
. 2
}:cm{E (0)+2—Ok +kp} mo( § cmEn(K) Upo(r). (A.13)

Multiplying both sides of Eq. (A.13) by Ufo(r) and integrating over a volume of a unit
cell (V,), the following set of linear homogeneous equations is obtained:

Cy |:En(k) _El( - 2I’H()k2:| Z Cm k plm = Oa (A14)
where
i = | Up(r)p U () (A.15)
V.

By giving / successive integer values, one obtains the full set of equations.

In the general case, the set of equations has a nontrivial solution if the determinant of the
coefficients ¢, is zero. This condition gives the energy eigenvalues E, (k) in terms of the
quantities E,,(0) and p,,,. The relative values of the expansion coefficients c,, are then
obtained by using the values of E, (k). The absolute values of c,, are obtained by imposing
normalization conditions on iy. The accuracy of the calculation is increased if many such
coefficients are included. For practical reasons we need to limit ourselves to a few bands.
The bands of greatest interest in common semiconductors are conduction (C), heavy hole
(HH), light hole (LH), and split-off (SO) bands. Each of these four bands has two spin
components, so there are altogether eight bands. Depending on the problem at hand and the
degree of accuracy required, we may use some or all of these eight bands. We present below
the results by using different approximations regarding the number of bands.

A.2.1 Single-Electron Band

Let us assume that U, is determined mostly by U,,o and the contributions from other bands
are smaller. In other words, we assume that ¢,,(m # n) < ¢,. Then

V= [ cnUno(r) + Zcm o (T } exp (jk.r). (A.16)

Since ¥ is normalized, ) ", [¢;n |2 = 1; but we have assumed ¢,,, < ¢,. It follows, therefore,
that ¢, =~ 1.
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To solve Eq. (A.16), stationary perturbation theory is applied. First, neglect c¢,,, (m # n) in
comparison to ¢, in the nth equation. The result is
E,(k) = E,(0) + s L0 —K.Ppn- (A.17)
2my  mg

Next put ¢, =1 and obtain from Eq. (A.14)

h k'pmn

0 En0)—E(0) (A1

Cm R
neglecting the k.p term in the denominator. If this expression for c,, is now used in
Eq. (A.14), a second-order approximation results and one obtains

Pk h A\>  |kp,,
E,(k) =E, k $. Al
0 =B (0)+ 5+ M+;QQ Fo s a9

Since the extrema occur at k =0, p,, =0. Therefore, by choosing a proper coordinate
system, one may write

nk?

21’1’1,’ ’

En(k) = En(o) +

where, from Eq. (A.19),
1 \1 p |
2 E m , (A.20)

mz

where i is a unit vector along the ith coordinate axis. The above equation predicts a parabolic
E—k relation.

The analysis presented in this subsection may be improved by combining with the band
under consideration other bands close to it and treating the effects of the additional bands as
small perturbations.

A.2.2 Four Bands

We now consider four bands: the C, HH, LH, and SO bands. The valence bands are triply
degenerate, and the C-band minima and H-band maxima occur at k = 0. For the present, the
spin—orbit interaction is neglected. We denote the cell periodic parts of the conduction band
by U, and those of the three valence bands by U,, U,,, U,3. Also the symbols E. and E,, are
used to denote, respectively, the energy for conduction band minima and valence band
maxima. We may write the wavefunction for any k as
lﬁ = (ak U+ b Uy + e Uy + di Uvg) exp (jk.l‘), (A.Zl)

in accordance with Eq. (A.10). Using the symbol E' = E — 1i*k? /2my, the linear homoge-
neous equations are

aj (E,_E )_(h/mO)k'(bkpcvl + dkp(:VZ + ckpcv3) =0

—Clk(h/mO)k Pevi + bk(E/_EV)_(h/mO)k'(dkpvlv2 + Ckpvlv3) =0

—ar(h/mo)K.Peyy—bic(h/mo)K.p,1,, —dk(E'—E,)—(ii/mg k. = 0

_ak( /l/l’l())k Pev3 _bk(h/mo)k'pVIVS_dk(h/mo) -+ Ck(E/ ) =0

(A.22)
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The quantities p..,;, p,;,2, and so on are defined in Eq. (A.15). The matrix elements may
be evaluated once the Us are known. Since U, is an atomic s-like function and the U, s are p-
like functions, the k.p.,; term may be expressed as

* 0 0 0 5 B
JU, (kxax +ky8—y +k;az> U,d’r t,m=sx,y,z. (A.23)

2
.
mqJ

Since (0/0x)Uy is an odd function of x, the matrix element | U; (0/0x)Uy dx is nonzero
only when j = x. The same is true for [ U; (9/9x)U;dx. The function (9/0x) Uy is odd in
both x and y. Thus

7 Ox

« 0
JJU/ 7U)dXdy = 07 .]: 8, X, Y, 2.

The only nonvanishing matrix elements are the ones defined by the following
expressions:

0 0 .
P:—m—OJUja—ijd%:——JUYa—jU/d%, j=x,y,z. (A.24)

In the following, we shall assume that k is parallel to the z direction. Then we may rewrite the
four homogeneous equations (A.22) as

ay(E'—E.)—cxPk = 0,
bi(E'—E,) =0,

(A.25)
—axPkcy(E'—E,) =0,
di(E'—E,) =0.
The energy eigenvalues are thus given by
E' = E. Eyand (E'—E.)(E'—E,)—P*k* = 0. (A.26)

These equations give the dispersion relations when the conduction bands and valence
bands are strongly coupled. Denoting the energy gap by E, = E.—E,, we may write
Eq. (A.26) as

(E'—E.)(E'—E.+E,)—P*k* = 0.
When E' tends to E., we may neglect E'—E,. in comparison to E, and write
(E' —E,)E, = P°k*. (A.27)
If the band edge effective mass is denoted by m,y, we obtain

1212
P2:<E E. hk)’gg h2<1 _1)Eg. (A.28)

2my 2 My my) 2
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A.3 Spin-Orbit Interaction

The electron is a fermion with spin '/, in units of #. In classical mechanics, a point particle
rotating about an axis has an angular momentum L. = r X p. In the quantum picture, the
angular momentum of a point particle is quantized and the intrinsic value of the momentum
is called the spin. There is strong interaction between the spin and orbital motion of the
electrons. This spin—orbit coupling may be calculated for isolated atoms; however, it is
difficult to do so in crystals.

A.3.1 Spin-Orbit Interaction Term

To calculate the interaction a general form of spin—orbit interaction is assumed with a fitting
parameter that is adjusted to fit experimentally observed effects. The total Hamiltonian in
the presence of spin—orbit interaction is written as H = Hy+ Hy,, where H, is the
Hamiltonian without interaction and Hy, is the spin—orbit interaction written as

H,, = JL-S. (A.29)

Here L represents the operator for orbital angular momentum, S is the operator for spin
angular momentum, and £ is treated as a constant. The total angular momentum J may be
expressed as

P = (L+8)*=L>+S5+2L-S. (A.30a)
Thus

(L-S) = (1/2)(J*—L*-8*) = h; GG+ 1)—1(1+1)—s(s+1)], (A.30b)

where j, /, and s are the quantum numbers for the operators J, L, and S, respectively.
However, to calculate the spin—orbit interaction energy, one needs the pure angular
momentum states to which Eq. (A.30) is applicable. One should note that states like
|Xo) are mixed states, with the symbol o denoting the spin-up state. To illustrate this
statement, we express |X) in terms of pure angular momentum states, that is,

1X) = 7( Gra+éi1)

J (A.31)
|Y) = \/—(¢]l+¢1—1)
1Z) = ¢10

The ¢, ;’s are pure angular momentum states, and the expressions for the lower eigenstates
are

/3 . .
G141 = Y141(0,0) =F S?SIUHGXP (L)

/3
<l'>1,0 =Y10(0,¢) = ECOSH



Appendix A: k.p Method 409

The ¢, ;’s are elgenfunctlons of L? and L,. The respective quantum numbers are /=1 and
L=j. For example, L*¢p, | =1*(1)(1+1)¢, _; =2r*¢1,—1 and L., _, = —1h¢, _,

Equation (A.31) is modified if spin is 1ncluded for example, the spin-up state Px = |Xd> is
expressed as

%(—d)m + ¢y _1)o

This formulation is still in terms of mixed states. To decompose the mixed states into states
of pure angular momentum, the spin and orbital angular momentum must be added to obtain
the total angular momentum states. The standard Clebsch—Gordan (CG) technique is
employed for this addition. The following six equations are obtained as a result:

$3232 = P10 = (—1/V2)|(X +jY)a)

Xa) =

bsa1s = %mm %qﬁ - ;—é (X +¥)B)—|222)

3212 = é¢170ﬂ+ %(’51,—10‘ = %H(X_J'Y)OQ +12Zp)]
¢3/2,—3/2 = ¢1,—1,3 = (1/\/§)|(X—jY) )

¢11ﬁ*

(A.32)

«ﬁl/z‘l/z:\‘/—;mw = fn(xw) )+ |Z00)]

¢1/2,71/2:%¢1,71 \/—d)loﬁ \/—H(X —jY)o)—|Zp)]

These six equations are inverted to find states like ¢, ;, and from the resultant equations one
gets states like |Xo), and so on.

il 1 2

|Xor) = 7 —b3p230 + \/§¢3/2,1/2—\/;¢1/2,1/2]
1 1 2

|XB) =/ *ﬁ%/z,l/z*ﬁ‘f’l/z,l/z*%/z.a/z
il 1 2

|Yo) == ¢3/2,3/2+</53/2._1/2_\/7(l51/2,—1/2]
vzl V3 3 (A33)
iT1 2

|YB) = 7 ﬁ¢3/2,1/2+ ﬁ‘fh/u/z + 3032

2
|Zo) = §¢3/2’1/2_ﬁ¢1/2’1/2

2 1
ZB) =4 /= it —= /-
| ﬁ> \/;(153/2, 1/2 \/§¢’1/2, 1/2

The phases used in the above expressions for ¢; ,, in terms of [Xx), ....|Zf) are obtained in
the standard derivation of Clebsch—Gordan coefficients. The overall phase of a state is
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arbitrary and has no effect on the physical predictions. The convention used by Luttinger
and Kohn [10] is in widespread use and will be used here. The states are expressed in terms
of CG states as

$sy23/2(LK) = — s 05/2(CG) = %I(X L ¥)a)

$32,1/2(LK) = —j3/51/2(CG)

¢3/2,—1/2(LK) = 4’3/2,—1/2(CG) (A.34)
$3/2,-3/2(LK) = jip3)5 _3/2(CG)

$1/2,12(LK) = =151 2(CG)

¢1/2‘71/2(LK) :j(/)l/z,—l/z(CG)

The spin—orbit Hamiltonian may be calculated now with the above states. The interaction is

o
Hyy = 221+ 1)=1(+ 1) =5(s+ 1) (A35)

For p-type electron orbitals /=1 and s=1/2, j is given by the first subscript of ¢ in
Eq. (A.33). Many terms become zero as the pure states are orthogonal. We conclude that
only the following terms are nonzero:

A
(Xot|Hyo|Yor) = (Yo Ho|ZB) = (YB|Hso|Zot) = _]g

—

(A.36)
(Xo|Hy,|ZB) =

w| >

A A
i (XB|Hyo|Zo) = _§§ (XB|Hyo|YB) :]ga
where A is a parameter known as spin—orbit splitting given by A = A, = 311 /2.

A.3.2 Conduction Band Energy

The calculation of energy levels in the conduction band by including the spin—orbit
interaction is easier, and therefore we consider it first. As mentioned previously, we are
interested in four basic vectors, the |S) state for the conduction band and the |X).|Y), |Z)
states for the valence bands. There are four coefficients, ay . . .d; as in Eq. (A.21), needed
to describe a state. With the inclusion of spin, the number of basis vectors to be
considered becomes eight. The secular equation containing the coefficients and basis
vectors involves an 8 x 8 matrix. It turns out that if the basis vectors are arranged in the
following manner,

|Set) [(X +JY)B), 1Z0t), |((X—=/Y) ), ISB), [(X=jY)e), |Z), and |—(X +jY)a),

H 0

0 H|
where H is a 4 x 4 matrix. Using the matrix elements between different states and the
earlier elements obtained without the spin—orbit interactions, we may express the different

the matrix may be written in the form
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matrix elements in terms of P in the following form:

S0y |(X+Y)B)  [Zo)  [(X=jY)B)

|Sor) E,—E 0 —jkP 0
|(X +jY)B) 0 E,~E-A/3 V2A/3 0 (A.37)
|Zox) jkP V2A/3  E,—F' 0
|(Xxx—jY)B) 0 0 0 E,—E +A/3

To simplify the calculation, we choose the k-vector in (A.37) along the z-direction.
Furthermore, to account for the shift of band energies due to spin—orbit interaction, notations
E, and E, are used. The difference in signs in E,—E' + A/3 is due to the fact that
L.S:|(X +/¥)B) = —|(X +/Y)B) while L.S.|(X—jY)B) = |(X~j¥)B). Expanding (A.37)
one obtains

E =E,+A/3 (A.38a)

2A A A
(E’—E,, - 3> (E’—Ep— 3) (E'—E,)—k*P* (E’—Ep + 3> =0 (A.38b)

For small values of k%, the cubic equation can easily be solved by treating the term kP as a
small perturbation. This yields

k*P*(Es—E, +A/3)

E —E, .
1= 5t ECE, 1 20/3)(E—E,—A/3)

(A.38¢)

LetE, =E,+A/3 =0,E. = E; = Eg and E.—E, = Eg, the direct gap. We then rewrite
Eq. (A.38a) as

E'(E'—Eg)(E' +A)—Kk*P*(E' +2A/3) = 0. (A.39)

Taking E. = Ey in the first approximation,

Rk KPPl 2 1
E.(k)=E —t — | . A.40
)= Bt o+ S [t ] (A.400)
We also obtain, by putting E, = E, +A/3 =0,
n*k?
Eq(k)=——. A.40b
(k) =5 (A40b)
Taking E = 0,
k> 2k*P*
Ep=—— . A.40
2 2m0 3Eg0 ( C)
Finally, taking E' = —A as a first approximation,
k> k*P?
Esz=—-A+ - (A.40d)

2my 3(Eg0 —I—A) '
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InEq. (A.40a), E. is the energy of the conduction band electrons, while E, , E,,, and E, 3, are,
respectively, the energies of the three valence bands. From Eq. (A.40a), we may define the
band edge effective mass for conduction band electrons by writing

Ec = Eg() + h2k2/2m(,0.

It then follows that

11 2P (2 1
= +(+ ) (A.41)

) N WTO 3h2 EgO EgO + A

The momentum matrix element, P, which is central to all calculation of transition
probabilities from the valence band to the conduction band, may be expressed in terms
of m,g as

P — n? Eg()(Eg() + A) mo—nNle
2meo Ego +2A/3 mo

(A.42)

A.3.3 Valence Band Energies

The earlier treatment of the dispersion relation cannot explain the properties of electrons
in the valence band. Referring to Eq. (A.40a), one notices that the energy of the electrons
increases with k, which however is opposite to what is observed experimentally.
To treat the valence band properties correctly, degenerate perturbation theory is
needed [11].

Let the state of the electron in the /th band at k=0 be degenerate, having f-fold
degeneracy. It follows from the theory of perturbation of degenerate states that the
second-order corrections AE®) due to the (7i/mo)(k.p) perturbation are the roots of the
secular equation

PENC (I, ¥ |k.p|n,s){n,sk.pll,r) o
l(nﬂ) 2 E1(0)—E,(0) —AET o, | =0, (A.43)

ns

where the primed summation sign indicates that the summation is over all n # [ and over
s.|l,r) and |/,7") are the unperturbed f-fold degenerate wavefunctions (r, ¥ =1,2,.. f)
satisfying Eq. (A.43) for the energy eigenvalue E,(0). The|n, s)’s are the wavefunctions for
energy level E,(0). The order of the determinant of the secular equation is equal to the degree
of degeneracy of the level E; (0). In the present situation, the degenerate eigenstates at k =0
are the three / =1, m; =0, and %1 states. To the second order in perturbation, the energy in
the nth band is

K k2
Eq(k) = E,(0) + =— +AEP (k), (A.44)
2Wl()
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where AE,E2> is given by Eq. (A.43) above. Hence we have the set of three equations

3

>

i=1

m 0) 2WlO

Z(,\Hzlm )(m|Hi|l) +{E1+ W—En(k)}éj,,] (n|k) = 0. (A.45)

Nontrivial solutions of this set of N coupled homogeneous equations occur only if
det[|H|—E,(k)I] =0,

where I is the identity matrix and H is a 3 X 3 matrix whose elements are

Hj [EH—}é +Z</|H/|m |H1>|l>.

The calculation of the matrix element is first made by ignoring the spin—orbit interaction for
the present. We take the basis sets as |X).|Y) and |Z). Then

PR = |(X|Hi|m)|?

H,, = (X|H|X) =E(0 . A.46
n = (X|H|X) = E1(0) + 2y " 2 E{0)—En(0) (A.46)
Since |X) is proportional to xf(r), we may verify that
m—5\<X|H 2 |(x 212 4 |(x 24X 22
Y lm)|* = [(X[pxlm) PK3 + [(XIpy ) |"&3 + [ (X |p:|m) "z
Thus we may write
n? | X|p,|m
H,=E
wmme 3 o s Gl
J=xy.z
Due to symmetry at k=0,
2 2
| (X[pylm)|” = |(X|p:|m)|*.
Therefore,
Hy, = Ey + Ak, + B(k; + k2), (A.47a)
where
(X Ip
A= e Z LA (A.47b)

m(z) Z | X|pYV (A.47c¢)
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The remaining matrix elements can be evaluated in a similar way to give the following
Hamiltonian matrix,

Ei + Ak + Bk +k2) Ckk, Chk-
H= Chcky Ei + Ak} + B(k; +k2) Ckyk-
Ck k. Ckyk- Ei +Ak? +B(k; +k7)
(A.48)
where
o Z i<xmv>mpy|2: g|pyv>wx|Y>. (A49)

J
Let us now consider the effect of spin. As noted earlier in Eq. (A.30) forj = '/, (L.S) = -1,
and for j=3/2, (L.S) = 4 /?/2. Thus the states are split by an amount A proportional to
(3/2)12, the doubly degenerate state with j = 3/2 moving up by A/3 and the single j =/,
state moving down by 2A/3. Since in the designation ‘Zs; jmj>, I=1ands="/, we shall use
only the symbol L/m]> to denote the states. As noted in this appendix, the Hamiltonian for the
spin—orbit coupling is diagonalized if the states are chosen according to Eq. (A.32).

We shall treat the j = 3/2 states and j = '/, states separately, since the splitting energy is
large. The Hamiltonian matrix |H| now becomes a 4 x 4 matrix for j = 3/2 statesand a2 X 2
matrix for j ="/, states. We may evaluate the matrix elements for the 4 x 4 matrix using
Eq. (A.47). Thus

Hy = (3/2,3/2|H[3/2,3/2) = (1/2)((X +jY)a|H|(X +jY))
= (1/2)[(Xo|H|Xo) + (Yo|H|Yo) +j(Xa|H|Yo)—j{Yo|H|Xo))
A 2 2 B > 2 2 (A.50)
:E1+§(kx +ky )+§(kx +ky? +2k.7)
= Hy

where the symbols 1, 2, 3, and 4 are used in the order in which the states are written in
Eq. (A.48). Similarly,

1 1
— (X +jY)o|H|[(X +jY)p—2Z0]) = — (H..—JH,.).
375 IV HICX +Y)B-2720) = = (et
Instead of computing matrix elements (n|p|m) from first principles, one replaces them with
experimentally determined parameters called Luttinger parameters, defined as

Hypy =

71 = —2mo(A+2B) /31, 7, = —mo(A—B) /31, 73 = —moC/3h*. (A.51)

In terms of Luttinger parameters,

H2k2 (k2 +k?)
Hy = E——=(y,—2y,)———— 27 (4 A.52
11 1 2o (71—272) 2 (71 +72) ( )

Since in measurements the parameters conform to holes, and since the hole energy is
positive, we write H; = —H},;, and the zero energy reference is E; = 0. Repeating the above



Appendix A: k.p Method 415

calculation for the other matrix elements, we obtain for the Luttinger Hamiltonian,
H, hh —c —b 0

¢ Hy 0 b
H=| O T (A.53)

where
22 W (k2 + k)
Hy = o (714 27,)— 2;74 2= (y1—72)
&Y% .
=3 yz(kg—kyz)—zmkxky} (A.54)
V/3h?

b= 707’3kz(kx —Jjky)-

In the vicinity of k = 0, one may use the axial approximation, where y, and y, are replaced by
an effective Luttinger parameter,

7= (1/2)(72+7) (A.55)
The function c is then expressed as

V3n'y
2”’10

c=

(ke—jky)? (A.56)

The dispersion relation for valence band holes may be written as

g 1/2
E= Ak {sz“ + C*(lGk; + kok? +k2k3} /
2my xy Xtz v
n U (A.57)
= [—y1k2 + {4y§k4 +12(73—73) (kaky + kak? + k.fk?} }

Introducing the spherical polar coordinate system with the polar axis along the z-direction,
we obtain
PR [A + (B +c2/5)1/2]
v 2m0 '

This enables us to define effective masses for heavy and light holes as
mo

A—(B2+C2/5)' (A.58)

Mpyp =

mo

A.58b
A+ (B2+2/5)" (A.350)

my, =

Example A.1

Using the values of y’s in Table A.1, the band edge effective masses for Ge are
mpy = 0.33 my and my;, = 0.04 my.; the values for Si are m;,;, = 0.56 mg and my, = 0.16 my,.
For GaAs, the values are my,;, = 0.059 mq and my;, = 0.08 my,.
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Table A.1 Band structure parameters for Ge, Si, and GaAs

me/mg 71 123 73
Ge 1.58/0.082 13.25 4.20 5.56
Si 0.916/0.191 4.26 0.34 1.45
GaAs 0.067 6.8 2.1 2.9

A.3.4 Momentum Matrix Elements

It follows from Eq. (A.41) that the conduction band effective mass is expressed in terms
of P and is related to p.,, the momentum matrix element. The momentum matrix
element also appears in the calculation of the optical absorption coefficient or the
recombination rate in semiconductors. The conduction band edge state for a direct-gap
semiconductor has been found to have s-type symmetry and is denoted by |Sx) and
|-Sp). The valence band states are written in terms of angular momentum spin
representation in Eq. (A.32).
From symmetry, we find that only the matrix elements of the form

(Xlpx|S) = (YlpyI$) = (2

are nonzero. The nonvanishing matrix elements are

Pz S>

(£3/2lpsl£S) = (1/V2)(XIplS),  (£1/2lpx|FS) = (1/v6)(X|ps|S)
(£3/2|ps|£S) = (2/V6)(X]p.|S)

One may define a quantity:

2 )
Ep = |XlpIS) =%

mo

The values of E, for different semiconductors are remarkably close to ~25eV.

A4 Quantum Wells

The subband structures for electrons and holes have been calculated in Chapter 3 by using
simple theory. However, for refined calculation, complete knowledge of the E~k dispersion
relation is needed in order to explain the experimental results. Here we shall give the outline
of the theory for valence band states in a quantum well.

A.4.1 Subband Structures for Holes

The degenerate nature of the valence bands prompts us to employ the multiband effective
mass approximation. The Hamiltonian is written as

> [Hw (k) + V(2)du]d), = Emb),. (A.59)

v
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The complete wavefunction for the valence band hole in the mth subband in the vth valence
band ¢, (r) is written in terms of the envelope function ¢,, as

4
Puic(r) =D &y (K, 2) exp (jkr) U”(x). (A.60)
v=1
We have assumed as before that the conduction band is decoupled from the valence bands
and only the two top valence bands are considered. We therefore consider four eigenstates:
1) = [3/2,3/2),12) = 13/2,-1/2), 3) = [3/2,1/2),14) = [3/2,~3/2).

The Luttinger Hamiltonians for the hole states are given by Eq. (A.53) and the coefficients
are given in Eq. (A.54).

For a rectangular QW, H,, (k) given in the matrix form described here should be replaced
by H,, (k, —j0/0z), where k is now the in-plane wave vector. The simple solution for k =0
has been worked out in Chapter 3 (see Eq. (3.57)).

The in-plane effective masses for holes in different subbands have been calculated by
different authors using various degrees of approximations. We assume that the band gap as
well as the separation between the heavy-hole and split-off bands are large, so that the
Hamiltonian matrix is treated as a 4 x 4 matrix as before. The eigenvalues are obtained by
solving the secular determinant of the 4 x 4 matrix, and the expression is given by (A.57).

The upper and lower signs correspond, respectively, to heavy- and light-hole bands.
The character of the bands becomes increasingly mixed for higher values of k. The effective
mass in the xy plane depends, in general, on the direction, and the magnitude of the
anisotropy is determined by the difference in y, and y5. In many cases the difference is small
and it is justified to take a spherical average. It can be shown that the average
<k§k§ +kok? + k§k§> = k*/5. Putting this in Eq. (A.57), we obtain

2

E (=, £279)k2 (A.61)

= Tn,lo
where
7 =(213+373)/5 (A.62)

Each of the four eigenfunctions is of the form:
o =1[A|3/2,3/2) + B|3/2,—1/2) + C|3/2,1/2) + D|3/2,-3/2)] exp (j kr) (A.63)

The four eigenfunctions may be expressed as column matrices.
In the practical situation when the barrier height is finite, a parameter 3 = (y, +73)/2 is

introduced. The 4 x 4 Hamiltonian matrix is transformed to a new matrix H by using a
unitary matrix U such that [12]

_ HY 0
H=UHU' = , (A.64)
0 H-
where
H,, R H, R
HY = ' and H! =
R*  Hy, R* Hyp, (A.65)

R = |c[—j[b]
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The upper and lower blocks are then decoupled. We write now the upper- and lower-block
envelope functions as

P (1) = Z &V (k, z) exp (jk.r)|v) (A.66a)
v=1,2
and
Py (¥) = Z g (k, z) exp (jk.r)|v), (A.66b)
v=24

where {|v)} denotes the transformed basis set, and the envelope functions satisfy

> {H <‘”’ aﬁ ) *V(z)évw]gf,:’”’ (k,2) = EL(K)eh ") (k,2).  (A67)
A

V=12

A.4.2 Subband Structures for Strained Ge on GeSiSn

The theoretical calculation by Chang and Chuang [13] is somewhat along the lines
shown, but includes the strain effect. The upper- and lower-block Hamiltonians are
expressed as

[V, (z2)-P—Q R |

Hy = L (A.68a)
L R Vy(2)-P+Q+AQ |
V) A ~ -

H = ") P_t erae K (A.68b)
I R V,(z2)-P—-Q |

oo 0 ik

S P
2mgy 0z " oz 2my 5
P, = _av(gxx +8_vy +£:z)
o 0 n*k?
0 PRy +0,

T 2my0z'%0z " 2mo

b,
Q.= — E (Sxx + &y + 8zz)

Agz[ (A+Qa)2+8Q§—(A+Qs)]
,_\/§h2 Y2+ 73\ 2 0 0
RS ()i (s )]

v V3R [ a3 0 s
R © 2mp [( 2 )k’Jrkl 937 ) |

The symbols have their usual meanings.

| —
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In a QW grown along the [100] plane, all four L valleys are equivalent. The Hamiltonian
for the [111] L valley may be written as

Y 0\ o[l 2\ 0 .Vor'k
knke=—j—) -2 2 ( 4 = )2
< nle =) az> 2 0z <3m1 * 3mt> - 76

O(L 1y (Lo,
oz m; m; m;) 0z

2 1\ 7?k3
_ + _ ) —
3m[ 37’)’1[ 2

hk
(1] 1]
—|—2m,+V ()+VS (Z)
(A.69)

Vg[l]l](z) _ CIL(Sxx + &y +822)

1 2n
ki = — k&g+k\’_7
= k)

1
k = — *kvc+k
2= 75 (Theth)

A.4.3 Expression for Gain

In order to calculate the gain spectra, one needs to evaluate the squared momentum
matrix elements for transverse electric (TE) and transverse magnetic (TM) configurations.
We quote here the results for the TE momentum matrix element as given in Chang
and Chuang.

3 1
M) =3 | detan ol )| + 3| [ i o(Mog? (i)
3 1
M) =3 | [ dedaia(IMbeld (2)| + 5| [ doaia(IMbgl) k2
—o0 —00
(Sl _ mo
M} = 3 =< Er

(A.70)

where M3 is the bulk momentum matrlx element squared and E, is the corresponding
energy parameter. gm (k,, z) and gm (k,, z) are the eigencomponents of the upper
Hamiltonian Hy; gﬁn (ki,z) and gf,, (ks z) are the eigencomponents of the lower
Hamiltonian H;, and ¢ is the eigenfunction for the I'valley. Similar equations may be
obtained for TM waves [13].
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