ON HALL PROPERTIES FOR SUBGROUPS OF FINITE GROUPS E.P.Vdovin

Let π be a set of primes and π' be its complement in the set of all primes. For a natural number n we denote by $\pi(n)$ the set of prime divisors of n, and for a finite group G by $\pi(G)$ we denote $\pi(|G|)$, where |G| is the order of G.

A subgroup H of a finite group G is called a π -Hall subgroup, if $\pi(H) \subseteq \pi$ and $\pi(|G|/|H|) \subseteq \pi'$. Following P.Hall we say that a finite group G satisfies E_{π} , if it possesses a π -Hall subgroup; G satisfies C_{π} , if G satisfies E_{π} and all π -Hall subgroups are conjugate; G satisfies D_{π} , if Gsatisfies C_{π} and each π -subgroup of G is included in a π -Hall subgroup of G.

In our talk we discuss what subgroups of an E_{π} - (respectively, a C_{π} -, a D_{π} -) group satisfy E_{π} (respectively C_{π}, D_{π}).